Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New path discovered for future generation of glucose-measuring biosensors

15.01.2013
CIC bioGUNE researchers have opened a new pathway for the future development of biosensors that enable measuring the glucose in the blood, but which are also believed to be more reliable with other fluids, such as urine.
To this end, a complex scientific process has been developed which has called into question a dominant paradigm amongst the scientific community with respect to the mechanisms of binding and communication between proteins.

The mechanisms of communication at subcellular level are based on the interaction between proteins or between proteins and metabolites and other ligands. These phenomena help to explain the immense majority of protein functions in living organisms, but it is essential to this end that each protein knows exactly to which ligand it has to bind.

To date it has been widely accepted within the scientific community that there was a double binding mechanism between proteins, differentiated and isolated like two independent processes: some proteins bind with just one mechanism known as ‘induced fit’ (the protein takes the shape of the ligand during the association process), while others do so exclusively through a mechanism known as ‘conformational selection’ (in the same way that each lock requires a key with specific characteristics, the bind between a protein and a ligand will depend if their shapes make such a fit possible).

However, in this research, Dr. Oscar Millet, from the Structural Biology Unit at CIC bioGUNE, and published in the November issue of the Journal of the American Chemical Society, refutes this paradigm and puts forward the idea that slight modifications using genetic engineering introduced into the hinge regions between two proteins are sufficient to alter the binding mechanism itself.

For the development of this research, two bacterial periplasmic binding proteins were taken as a model. These proteins bind through a spectacular conformational change (closing two domains round a hinge region) and which is similar to the process that carnivorous plants use to trap insects between their fleshy lobes.

“The main result of our work has shown that both mechanisms are intimately connected and that we can go from one to another just by introducing small modifications in the protein,” explained Óscar Millet.

“Not only have we understood this mechanism, but we have seen that the difference between this induced fit and the conformational selection is very subtle; they are actually not two independent processes – but everything is, in fact, connected. Nature is always subtle, and small variations to the chemical composition of the hinge lead us from one mechanism to the other,” added the CIC bioGUNE researcher.

“This mechanism is completely governed by the hinge region to the point that by exchanging the hinges using genetic engineering, the change of mechanism also occurs: the GGBP with the RBP hinge acts through the induced fit mechanism and vice versa, and the RBP with the GGBP hinge binds to the substratum through the lock-and-key mechanism,” Dr Millet explained.

“Understanding the mechanism by which periplasmic proteins trap glucose to insert it into the cells opens the possibility of using these molecules as biosensors”, explained Dr Millet. Thanks to these, glucose concentration could be measured in fluids other than blood, for example urine. This would make the process easier and would provide more reliable data than the traditional glucose concentration measurement methods in the blood of diabetes patients.

The techniques currently used can only give an approximate measurement of blood glucose concentration, as there are other substances that hide it. Any advance, therefore, in the search for new diagnosis methods will improve the control of the disease.

Diabetes

It is very important for diabetes patients to measure their glucose concentration, as diabetes is a serious chronic disorder that affects more than 300 million people worldwide, and 5 million in Spain. This metabolic disease is caused by low production of a hormone – insulin – in the pancreas or when the body does not use this hormone properly. Insulin is involved in the transport of glucose to the interior of the cells, which turn it into useful energy.

In diabetics, the low generation of insulin or inadequate usage in the body leads to an excessive blood glucose concentration and causes many symptoms such as tiredness, weight loss, neuropathies, problems of vision and, in extreme cases, death.

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Life Sciences:

nachricht Protein 'spy' gains new abilities
28.04.2017 | Rice University

nachricht How Plants Form Their Sugar Transport Routes
28.04.2017 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>