Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Passing clouds in cuttlefish

06.08.2014

Max Planck scientists establish tropical cuttlefish Metasepia tullbergi as a model organism to study travelling waves in biological systems

Some cephalopods are masters of display: Not only can they adapt their skin colour to their immediate environment, thereby merging with the background, they can also produce propagating colour waves along their body.


The cuttlefish Metasepia tullbergi is not only extremely colourful, it can also generate colour waves traveling across its body.

© Stephan Junek


Metasepia tullbergi fully deserves its name: Paintpot Cuttlefish.

© Stephan Junek

These so-called ‘passing clouds’ can be observed in behavioural contexts such as hunting, swimming, mating, or even in animals resting under rocks. Their function, however, remains highly speculative. Researchers at the Max Planck Institute for Brain Research in Frankfurt, Germany, have identified a cuttlefish species in which these waves are so prevalent that their properties can be studied in the laboratory. Using simple behavioural methods, they have circumscribed their possible underlying causes to a relatively small set of neuronal circuits.

Cuttlefish, squid and octopuses have remarkable control over their skin pigmentation. Cephalopod skin contains elastic pigmented cells called chromatophores. An adult cuttlefish may contain several millions of them. The size of each chromatophore can be rapidly and individually altered by neural activation of radial muscles.  If those muscles relax, their chromatophore shrinks.

If they contract, the chromatophore  grows larger. One form of cephalopod pigmentation pattern is the passing cloud – a dark band that travels across the body of the animal.  It can be superimposed on various static body patterns and textures. The passing cloud results from the coordinated activation of chromatophore arrays to generate one, or as in the present case, several simultaneous traveling waves of pigmentation.

The tropical cuttlefish Metasepia tullbergi proves to be a suitable model organism to investigate the possible neural mechanisms underlying these passing clouds. Using high-speed video cameras with 50 or 100 frames per second, the scientists from the Max Planck Institute for Brain Research observed that the mantle of Metasepia contains four regions of wave travel on each half of the body.

Each region supports a different propagation direction with the waves remaining within the boundaries of a given region. The animal then uses different combinations of such regions of wave travel to produce different displays.

The waves’ travelling speed can vary up to six-fold, but it is the same in all regions at a given time. The wavelength of each wave corresponds roughly to its length of travel, so that usually only one band is visible in each region at a time.

Those regions that are active simultaneously are also perfectly synchronized, meaning that the arrival times of two bands in their respective region match. In addition, the researchers observed that a travelling wave can even disappear and reappear in a different position, a phenomenon they call ‘blink’. It is a transient and local decrease in the intensity of the band, revealing on-going but invisible band propagation.

The results indicate that the passing clouds are not generated by the motoneurons in the mantle of the animal. Instead, neurons upstream of the chromatophore motoneurons are likely to form wave-pattern-generators.  “In principle, three different types of neuronal circuits could be responsible for the periodic traveling waves in Metasepia tullbergi.

Based on our results we can exclude one of these types”, explains Gilles Laurent, Director of the Department of Neural Systems and Coding. The behavioural studies alone do not allow distinguishing between the two types of circuits. If future experiments, however, lend support to one type over the other, the present findings will help to specify the connectivity and biophysical properties of the circuit.

Contact 

Prof. Gilles Laurent

Max Planck Institute for Brain Research, Frankfurt am Main

Phone: +49 69 850033-2001
Fax: +49 69 850033-2102

 

Original publication

 
Andres Laan, Tamar Gutnick, Michael J. Kuba, and Gilles Laurent
Behavioral analysis of cuttlefish traveling waves and its implications for neural control
Current Biology, 4 August 2014 (DOI: 10.1016/j.cub.2014.06.027)

Prof. Gilles Laurent | Max-Planck-Institute
Further information:
http://www.mpg.de/8336540/colour-waves-cuttlefish

Further reports about: Brain chromatophore clouds cuttlefish muscles neural pigmentation properties underlying waves

More articles from Life Sciences:

nachricht Rice study decodes genetic circuitry for bacterial spore formation
24.05.2016 | Rice University

nachricht How Neural Circuits Implement Natural Vision
24.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

Programmable materials find strength in molecular repetition

24.05.2016 | Materials Sciences

Engineers take first step toward flexible, wearable, tricorder-like device

24.05.2016 | Information Technology

Rice study decodes genetic circuitry for bacterial spore formation

24.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>