Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Passing clouds in cuttlefish

06.08.2014

Max Planck scientists establish tropical cuttlefish Metasepia tullbergi as a model organism to study travelling waves in biological systems

Some cephalopods are masters of display: Not only can they adapt their skin colour to their immediate environment, thereby merging with the background, they can also produce propagating colour waves along their body.


The cuttlefish Metasepia tullbergi is not only extremely colourful, it can also generate colour waves traveling across its body.

© Stephan Junek


Metasepia tullbergi fully deserves its name: Paintpot Cuttlefish.

© Stephan Junek

These so-called ‘passing clouds’ can be observed in behavioural contexts such as hunting, swimming, mating, or even in animals resting under rocks. Their function, however, remains highly speculative. Researchers at the Max Planck Institute for Brain Research in Frankfurt, Germany, have identified a cuttlefish species in which these waves are so prevalent that their properties can be studied in the laboratory. Using simple behavioural methods, they have circumscribed their possible underlying causes to a relatively small set of neuronal circuits.

Cuttlefish, squid and octopuses have remarkable control over their skin pigmentation. Cephalopod skin contains elastic pigmented cells called chromatophores. An adult cuttlefish may contain several millions of them. The size of each chromatophore can be rapidly and individually altered by neural activation of radial muscles.  If those muscles relax, their chromatophore shrinks.

If they contract, the chromatophore  grows larger. One form of cephalopod pigmentation pattern is the passing cloud – a dark band that travels across the body of the animal.  It can be superimposed on various static body patterns and textures. The passing cloud results from the coordinated activation of chromatophore arrays to generate one, or as in the present case, several simultaneous traveling waves of pigmentation.

The tropical cuttlefish Metasepia tullbergi proves to be a suitable model organism to investigate the possible neural mechanisms underlying these passing clouds. Using high-speed video cameras with 50 or 100 frames per second, the scientists from the Max Planck Institute for Brain Research observed that the mantle of Metasepia contains four regions of wave travel on each half of the body.

Each region supports a different propagation direction with the waves remaining within the boundaries of a given region. The animal then uses different combinations of such regions of wave travel to produce different displays.

The waves’ travelling speed can vary up to six-fold, but it is the same in all regions at a given time. The wavelength of each wave corresponds roughly to its length of travel, so that usually only one band is visible in each region at a time.

Those regions that are active simultaneously are also perfectly synchronized, meaning that the arrival times of two bands in their respective region match. In addition, the researchers observed that a travelling wave can even disappear and reappear in a different position, a phenomenon they call ‘blink’. It is a transient and local decrease in the intensity of the band, revealing on-going but invisible band propagation.

The results indicate that the passing clouds are not generated by the motoneurons in the mantle of the animal. Instead, neurons upstream of the chromatophore motoneurons are likely to form wave-pattern-generators.  “In principle, three different types of neuronal circuits could be responsible for the periodic traveling waves in Metasepia tullbergi.

Based on our results we can exclude one of these types”, explains Gilles Laurent, Director of the Department of Neural Systems and Coding. The behavioural studies alone do not allow distinguishing between the two types of circuits. If future experiments, however, lend support to one type over the other, the present findings will help to specify the connectivity and biophysical properties of the circuit.

Contact 

Prof. Gilles Laurent

Max Planck Institute for Brain Research, Frankfurt am Main

Phone: +49 69 850033-2001
Fax: +49 69 850033-2102

 

Original publication

 
Andres Laan, Tamar Gutnick, Michael J. Kuba, and Gilles Laurent
Behavioral analysis of cuttlefish traveling waves and its implications for neural control
Current Biology, 4 August 2014 (DOI: 10.1016/j.cub.2014.06.027)

Prof. Gilles Laurent | Max-Planck-Institute
Further information:
http://www.mpg.de/8336540/colour-waves-cuttlefish

Further reports about: Brain chromatophore clouds cuttlefish muscles neural pigmentation properties underlying waves

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>