Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Passing clouds in cuttlefish

06.08.2014

Max Planck scientists establish tropical cuttlefish Metasepia tullbergi as a model organism to study travelling waves in biological systems

Some cephalopods are masters of display: Not only can they adapt their skin colour to their immediate environment, thereby merging with the background, they can also produce propagating colour waves along their body.


The cuttlefish Metasepia tullbergi is not only extremely colourful, it can also generate colour waves traveling across its body.

© Stephan Junek


Metasepia tullbergi fully deserves its name: Paintpot Cuttlefish.

© Stephan Junek

These so-called ‘passing clouds’ can be observed in behavioural contexts such as hunting, swimming, mating, or even in animals resting under rocks. Their function, however, remains highly speculative. Researchers at the Max Planck Institute for Brain Research in Frankfurt, Germany, have identified a cuttlefish species in which these waves are so prevalent that their properties can be studied in the laboratory. Using simple behavioural methods, they have circumscribed their possible underlying causes to a relatively small set of neuronal circuits.

Cuttlefish, squid and octopuses have remarkable control over their skin pigmentation. Cephalopod skin contains elastic pigmented cells called chromatophores. An adult cuttlefish may contain several millions of them. The size of each chromatophore can be rapidly and individually altered by neural activation of radial muscles.  If those muscles relax, their chromatophore shrinks.

If they contract, the chromatophore  grows larger. One form of cephalopod pigmentation pattern is the passing cloud – a dark band that travels across the body of the animal.  It can be superimposed on various static body patterns and textures. The passing cloud results from the coordinated activation of chromatophore arrays to generate one, or as in the present case, several simultaneous traveling waves of pigmentation.

The tropical cuttlefish Metasepia tullbergi proves to be a suitable model organism to investigate the possible neural mechanisms underlying these passing clouds. Using high-speed video cameras with 50 or 100 frames per second, the scientists from the Max Planck Institute for Brain Research observed that the mantle of Metasepia contains four regions of wave travel on each half of the body.

Each region supports a different propagation direction with the waves remaining within the boundaries of a given region. The animal then uses different combinations of such regions of wave travel to produce different displays.

The waves’ travelling speed can vary up to six-fold, but it is the same in all regions at a given time. The wavelength of each wave corresponds roughly to its length of travel, so that usually only one band is visible in each region at a time.

Those regions that are active simultaneously are also perfectly synchronized, meaning that the arrival times of two bands in their respective region match. In addition, the researchers observed that a travelling wave can even disappear and reappear in a different position, a phenomenon they call ‘blink’. It is a transient and local decrease in the intensity of the band, revealing on-going but invisible band propagation.

The results indicate that the passing clouds are not generated by the motoneurons in the mantle of the animal. Instead, neurons upstream of the chromatophore motoneurons are likely to form wave-pattern-generators.  “In principle, three different types of neuronal circuits could be responsible for the periodic traveling waves in Metasepia tullbergi.

Based on our results we can exclude one of these types”, explains Gilles Laurent, Director of the Department of Neural Systems and Coding. The behavioural studies alone do not allow distinguishing between the two types of circuits. If future experiments, however, lend support to one type over the other, the present findings will help to specify the connectivity and biophysical properties of the circuit.

Contact 

Prof. Gilles Laurent

Max Planck Institute for Brain Research, Frankfurt am Main

Phone: +49 69 850033-2001
Fax: +49 69 850033-2102

 

Original publication

 
Andres Laan, Tamar Gutnick, Michael J. Kuba, and Gilles Laurent
Behavioral analysis of cuttlefish traveling waves and its implications for neural control
Current Biology, 4 August 2014 (DOI: 10.1016/j.cub.2014.06.027)

Prof. Gilles Laurent | Max-Planck-Institute
Further information:
http://www.mpg.de/8336540/colour-waves-cuttlefish

Further reports about: Brain chromatophore clouds cuttlefish muscles neural pigmentation properties underlying waves

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>