Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Partnership of genes affects the brain's development

14.02.2011
The human brain consists of approximately one hundred billion nerve cells. Each of these cells needs to connect to specific other cells during the brain's development in order to form a fully functional organism. Yet how does a nerve cell know where it should grow and which cells to contact?

Scientists of the Max Planck Institute of Neurobiology in Martinsried have now shown that growing nerve cells realise when they've reached their target area in the fly brain thanks to the interaction of two genes. Similar mechanisms are also likely to play a role during the development of the vertebrate brain and could thus be important for a better understanding of certain developmental disorders.


The photoreceptor nerve cells (green) of the fly\'s compound eye send their axons to the brain\'s optic ganglia. Scientists have now discovered that the axons are able to recognize their target area in the brain thanks to the interaction of two genes. Credit: Max Planck Institute of Neurobiology / Suzuki

The nervous system is incredibly complex. Millions and even many billion nerve cells are created during development. Each of these cells sets up connections to their neighbouring cells and then sends out a long connecting cable, the axon, to a different brain region. Once the axon has reached its target area it connects itself with the local nerve cells. In this way a processing chain is established which allows us, for example, to see a cup, recognize it as such, reach out and take hold of it. Had there been a misconnection between the nerve cells somewhere along the way between the eyes and the hand, it would be impossible to reach the coffee in the cup.

It is thus essential for nerve cells to connect to the correct partner cells. Based on this fact, scientists of the Max Planck Institute of Neurobiology in Martinsried and colleagues from Kyoto investigated how an axon knows where it should stop growing and start setting up connections with surrounding cells. For their investigation, the neurobiologists analyzed the function of genes that play a role in the development of the visual system of the fruit fly.

The scientists now report in the scientific journal Nature Neuroscience that the visual system of the fruit fly is only able to develop correctly, when two genes work together – the genes, that are in charge of producing the proteins "Golden Goal" and "Flamingo". These two proteins are located at the tip of a growing axon, where they are believed to gather information about their environment from the surrounding tissue. The actions of these two proteins enable nerve cells in a number of ways to find their way in the brain and recognize their target area. The study showed that chaos results if only one of the genes is active, or if there is a mismatch in the genes' activity: the axons cease to grow somewhere along the way and never reach their target area.

"We assume that very similar mechanisms play a role also in other organisms – including humans", explains Takashi Suzuki, lead author of the study. "We are now a good way into understanding how to manipulate the cells in such a way that they are certain to reach their target area." This knowledge would be an important foundation for eventual therapies of developmental disorders based upon a misguided growth of nerve cells. The knowledge may also help in the guidance of regenerating nerve cells back to their old connection sites.

Original publication:

Hakeda-Suzuki S*, Berger-Mueller S*, Tomasi T, Usui T, Horiuchi S, Uemura T, Suzuki T (*equal contribution)

Golden Goal Collaborates with Flamingo in Conferring Synaptic-Layer Specificity in the Visual System Nature Neuroscience,February 14 2011

Stefanie Merker | EurekAlert!
Further information:
http://www.neuro.mpg.de

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>