Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Particles Changing Angle: Unexpected Orientation in Capillaries

09.04.2013
When small particles flow through thin capillaries, they display an extremely unusual orientation behaviour. This has recently been discovered by a research team led by Prof. Stephan Förster and Prof. Walter Zimmermann (University of Bayreuth).

The participating scientists of Bayreuth University, the Radboud University Nijmegen, the research centre DESY in Hamburg, and the Max Planck Institute for Dynamics and Self-Organization in Göttingen report their new findings in the scientific journal PNAS. The discovery is of major importance for spinning processes designed for the production of synthetic fibres, and the understanding of vascular stenosis.


Microscopic image of a constricted capillary and a subsequent dilated section. Within the blue area, the particles orientate themselves parallel to the flow direction and in the orange area, perpendicular to the flow orientation.


Image: Department of Physical Chemistry I, University of Bayreuth; free for publication when references are included.


Scatter diagrams, originating from micro-X-ray experiments. A) Parallel orientation to the flow direction prior to the narrowing B) Perpendicular orientation to the flow direction after narrowing in the capillary.


Department of Physical Chemistry I, University of Bayreuth; free for publication when references are included.

X-ray experiments make the flow behaviour visible

Rod- or plate-like particles flowing through thin capillaries, usually orientate themselves parallel in relation to the flow direction. Should a capillary display a constriction, this alignment does not change until the particles have reached the narrowest location. As soon as the capillary expands again however, the particles align themselves perpendicular to the flow direction, having changed angle. Not only have scientists in Bayreuth, Hamburg, Nijmegen and Göttingen discovered this surprising phenomenon, they have also found an explanation. After establishing theoretical calculations, they were then able to show that within the dilating capillary segment, strong dilating forces appear perpendicular to the flow direction. Such dilating effects a realignment of the particles.

The theoretical calculations were confirmed using micro x-ray experiments at the German Electron Synchrotron (DESY). Here, using modern x-ray optical techniques and the radiation source PETRA III, highly intensive x-rays were produced measuring merely a few micrometers in diameter. By this means it was possible for the first time to observe the streaming behaviour in particularly thin capillaries. The scientists were able to precisely determine the alignment of particles flowing through a constricted capillary. The perpendicular orientation which is taken on after passing the narrowest point remains stable, not changing in the further course of the capillary.

New applications first in the production of high-performance fibres and second with regard to the onset of vascular diseases

The realignment of particles when flowing through narrow points of capillaries is crucial to the understanding of many biological and technical flow processes. One example is the process of spinning, whereby solutions of macromolecules and particles are pressed through fine spinning nozzles. In order to produce fibres characterised by high tear strength and other significant mechanical properties, it is vital that the macromolecules and particles orientate themselves parallel to the flow direction. As recently discovered however, they are aligned perpendicular to the flow direction when leaving the nozzle. This explains why, as has been known for a long time, that spun fibres have to be stretched. This stretching ensures the macromolecules and particles (the fibres’ building blocks) reassume the desired parallel alignment. The findings recently published in the PNAS make it possible to predict the flow orientation of such building blocks and control it precisely by means of an appropriate design of capillaries and nozzles.

A further area of application is in the field of medicine, insofar as cells and proteins flow through very fine blood vessels. When they realign themselves due to vascular stenosis, agglomeration may occur, resulting in thrombosis or vascular occlusion. The international team of researchers have possibly discovered an important subprocess which contributes significantly to the onset of vascular disease.

International research co-operation

Among the authors of this report published in the PNAS are Prof. Stephan Förster and his team from the Physical Chemistry I department as well as Prof. Walter Zimmermann of the Theoretical Physics I department of the University of Bayreuth, Dr. Julian Thiele (Radboud University Nijmegen), Dr. Jan Perlich, Dr. Adeline Buffet and Dr. Stephan V. Roth (DESY, Hamburg), and Dr. Dagmar Steinhauser (Max Planck Institute for Dynamics and Self-Organization, Göttingen, and German Institute of Rubber Technology, Hannover). The project has been realised within the framework of one of the most prestigious funding programmes of the European Union: in 2012, Prof. Stephan Förster was awarded an ERC Advanced Grant. The research received additional funding from the German Ministry of Science and Education (Bundesministerium für Bildung und Forschung, BMBF).

Publication:

Martin Trebbin, Dagmar Steinhauser, Jan Perlich, Adeline Buffet, Stephan V. Roth, Walter Zimmermann, Julian Thiele, Stephan Förster,
Anisotropic particles align perpendicular to the flow-direction in narrow microchannels
in: PNAS (Proceedings of the National Academy of Sciences of the United States of America),
published online before print April 8, 2013;
DOI: 10.1073/pnas.1219340110

Contact for further information:

Prof. Stephan Förster
Department of Physical Chemistry I
University of Bayreuth
D-95440 Bayreuth
Tel: +49 (0)921 / 55-2760
E-Mail (secretary): elisabeth.duengfelder@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Further information:
http://www.uni-bayreuth.de

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>