Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parsing the genome of a deadly brain tumor

08.09.2008
The most comprehensive to-date genomic analysis of a cancer – the deadly brain tumor glioblastoma multiforme – shows previously unrecognized changes in genes and provides an overall view of the missteps in the pathways that govern the growth and behavior of cells, said members of The Cancer Genome Atlas Research Network in a report that appears online today in the journal Nature.

"This was a big thrust for the public project," said Dr. Richard Gibbs, director of the Baylor College of Medicine Human Genome Sequencing Center, a member of the network and a co-author of the paper. "This answers the big question about whether the cancer genome project is worthwhile. The results show that it is—definitely." The BCM Center, the Genome Sequencing Center at Washington University School of Medicine in St. Louis, Missouri, and the Broad Institute of MIT and Harvard in Cambridge, Massachusetts led the effort that included many members from across the nation.

This interim analysis of 91 tumors and 623 genes provides important clues about how the disease originates and progresses in cells and how it eludes the effects of potent anti-cancer drugs and radiation, said Dr. David Wheeler, associate professor in the Genome Sequencing Center and a co-author of the report. It could provide researchers with clues about how to treat the disease. The Baylor Human Genome Sequencing Center was a major component in the effort to sequence the genes and identify mutations and changes that affected the ways cells react.

"Studies like this show the breadth of mutation across many genes," said Wheeler. "We can see the mutations in all the genes of each pathway that control growth, replication and death in the cancer cell. Researchers have never seen the whole landscape like this before, and it's providing many new insights into strategies to diagnose and treat cancer."

The ultimate goal of the project is to sequence the entire exome – that portion of the genetic blueprint that provides the code for proteins – of the tumor, said Wheeler. In fact, he said, the goal is to sequence genes in 500 brain cancer samples, but the network decided to publish preliminary results.

"When we pulled everything together with just 91 samples, the results were so interesting and important for treatment that we felt we should publish before the end of the project," he said.

Glioblastoma is the most common primary brain tumor. Most people live approximately one year after diagnosis. Understanding this cancer could result in better forms of treatment.

The analysis identified some genes known to cause cancer but whose role in glioblastoma had been previously underestimated, he said. For example, the genes ERBB2 (known to be implicated in breast and other cancers) and NF1 (neurofibromatosis gene 1 involved in a variety of tumors) were both found to be frequently mutated in this brain tumor. Other genes that previously had no known role in glioblastoma such as PIK3R1, a gene involved in regulating the metabolic actions of insulin were also found mutated in a variety of tumors.

In addition, the analysis gave scientists a wide view of how cell pathways are altered during the initiation and growth of glioblastoma.

"If we know what pathways are key to the formation of a tumor, we can design drugs to block those pathways," said Wheeler. "In cancer, key pathways are co-opted to make the cell grow and divide in an uncontrolled fashion."

For example, the TP53 pathway tells mutated cells to die in a process called apoptosis.

"It's a fail-safe mechanism," said Wheeler. "If a cell starts to become cancerous, p53 causes the cell to kill itself. If that pathway is knocked out, the cell avoids the fail-safe mechanism and can continue to divide."

Other pathways involved in the sequencing effort are also disrupted to allow the cancer to grow, he said.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>