Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parsing the genome of a deadly brain tumor

08.09.2008
The most comprehensive to-date genomic analysis of a cancer – the deadly brain tumor glioblastoma multiforme – shows previously unrecognized changes in genes and provides an overall view of the missteps in the pathways that govern the growth and behavior of cells, said members of The Cancer Genome Atlas Research Network in a report that appears online today in the journal Nature.

"This was a big thrust for the public project," said Dr. Richard Gibbs, director of the Baylor College of Medicine Human Genome Sequencing Center, a member of the network and a co-author of the paper. "This answers the big question about whether the cancer genome project is worthwhile. The results show that it is—definitely." The BCM Center, the Genome Sequencing Center at Washington University School of Medicine in St. Louis, Missouri, and the Broad Institute of MIT and Harvard in Cambridge, Massachusetts led the effort that included many members from across the nation.

This interim analysis of 91 tumors and 623 genes provides important clues about how the disease originates and progresses in cells and how it eludes the effects of potent anti-cancer drugs and radiation, said Dr. David Wheeler, associate professor in the Genome Sequencing Center and a co-author of the report. It could provide researchers with clues about how to treat the disease. The Baylor Human Genome Sequencing Center was a major component in the effort to sequence the genes and identify mutations and changes that affected the ways cells react.

"Studies like this show the breadth of mutation across many genes," said Wheeler. "We can see the mutations in all the genes of each pathway that control growth, replication and death in the cancer cell. Researchers have never seen the whole landscape like this before, and it's providing many new insights into strategies to diagnose and treat cancer."

The ultimate goal of the project is to sequence the entire exome – that portion of the genetic blueprint that provides the code for proteins – of the tumor, said Wheeler. In fact, he said, the goal is to sequence genes in 500 brain cancer samples, but the network decided to publish preliminary results.

"When we pulled everything together with just 91 samples, the results were so interesting and important for treatment that we felt we should publish before the end of the project," he said.

Glioblastoma is the most common primary brain tumor. Most people live approximately one year after diagnosis. Understanding this cancer could result in better forms of treatment.

The analysis identified some genes known to cause cancer but whose role in glioblastoma had been previously underestimated, he said. For example, the genes ERBB2 (known to be implicated in breast and other cancers) and NF1 (neurofibromatosis gene 1 involved in a variety of tumors) were both found to be frequently mutated in this brain tumor. Other genes that previously had no known role in glioblastoma such as PIK3R1, a gene involved in regulating the metabolic actions of insulin were also found mutated in a variety of tumors.

In addition, the analysis gave scientists a wide view of how cell pathways are altered during the initiation and growth of glioblastoma.

"If we know what pathways are key to the formation of a tumor, we can design drugs to block those pathways," said Wheeler. "In cancer, key pathways are co-opted to make the cell grow and divide in an uncontrolled fashion."

For example, the TP53 pathway tells mutated cells to die in a process called apoptosis.

"It's a fail-safe mechanism," said Wheeler. "If a cell starts to become cancerous, p53 causes the cell to kill itself. If that pathway is knocked out, the cell avoids the fail-safe mechanism and can continue to divide."

Other pathways involved in the sequencing effort are also disrupted to allow the cancer to grow, he said.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>