Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parsing the genome of a deadly brain tumor

08.09.2008
The most comprehensive to-date genomic analysis of a cancer – the deadly brain tumor glioblastoma multiforme – shows previously unrecognized changes in genes and provides an overall view of the missteps in the pathways that govern the growth and behavior of cells, said members of The Cancer Genome Atlas Research Network in a report that appears online today in the journal Nature.

"This was a big thrust for the public project," said Dr. Richard Gibbs, director of the Baylor College of Medicine Human Genome Sequencing Center, a member of the network and a co-author of the paper. "This answers the big question about whether the cancer genome project is worthwhile. The results show that it is—definitely." The BCM Center, the Genome Sequencing Center at Washington University School of Medicine in St. Louis, Missouri, and the Broad Institute of MIT and Harvard in Cambridge, Massachusetts led the effort that included many members from across the nation.

This interim analysis of 91 tumors and 623 genes provides important clues about how the disease originates and progresses in cells and how it eludes the effects of potent anti-cancer drugs and radiation, said Dr. David Wheeler, associate professor in the Genome Sequencing Center and a co-author of the report. It could provide researchers with clues about how to treat the disease. The Baylor Human Genome Sequencing Center was a major component in the effort to sequence the genes and identify mutations and changes that affected the ways cells react.

"Studies like this show the breadth of mutation across many genes," said Wheeler. "We can see the mutations in all the genes of each pathway that control growth, replication and death in the cancer cell. Researchers have never seen the whole landscape like this before, and it's providing many new insights into strategies to diagnose and treat cancer."

The ultimate goal of the project is to sequence the entire exome – that portion of the genetic blueprint that provides the code for proteins – of the tumor, said Wheeler. In fact, he said, the goal is to sequence genes in 500 brain cancer samples, but the network decided to publish preliminary results.

"When we pulled everything together with just 91 samples, the results were so interesting and important for treatment that we felt we should publish before the end of the project," he said.

Glioblastoma is the most common primary brain tumor. Most people live approximately one year after diagnosis. Understanding this cancer could result in better forms of treatment.

The analysis identified some genes known to cause cancer but whose role in glioblastoma had been previously underestimated, he said. For example, the genes ERBB2 (known to be implicated in breast and other cancers) and NF1 (neurofibromatosis gene 1 involved in a variety of tumors) were both found to be frequently mutated in this brain tumor. Other genes that previously had no known role in glioblastoma such as PIK3R1, a gene involved in regulating the metabolic actions of insulin were also found mutated in a variety of tumors.

In addition, the analysis gave scientists a wide view of how cell pathways are altered during the initiation and growth of glioblastoma.

"If we know what pathways are key to the formation of a tumor, we can design drugs to block those pathways," said Wheeler. "In cancer, key pathways are co-opted to make the cell grow and divide in an uncontrolled fashion."

For example, the TP53 pathway tells mutated cells to die in a process called apoptosis.

"It's a fail-safe mechanism," said Wheeler. "If a cell starts to become cancerous, p53 causes the cell to kill itself. If that pathway is knocked out, the cell avoids the fail-safe mechanism and can continue to divide."

Other pathways involved in the sequencing effort are also disrupted to allow the cancer to grow, he said.

Glenna Picton | EurekAlert!
Further information:
http://www.bcm.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>