Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parental Conflict in Plants: Maternal Factors Silence Paternal Genes

30.05.2011
In flowering plants, the beginning of embryogenesis is almost exclusively governed by maternal gene activity. Maternal factors regulate the development of the embryo and silence paternal genes during early stages of development.

This finding – obtained using next generation sequencing technology – was reported by an international team of researchers including plant geneticists from the University of Zurich. This newly uncovered mechanism may be involved in the maintenance of species boundaries and could play an important role in the development of novel crop varieties.

Mother and father each contribute one half of the genetic information to their offspring. Thus, it was thought that both parents contribute equally to the development of the next generation. Indeed, this holds true for late stages of embryo development in plants, but early on, things are quite different: during the earliest phase of embryo development - from the fertilized egg to the globular stage - predominantly the maternal genes are active. This phase of development is controlled largely by maternal factors, which actively repress or silence the genes inherited from the father. This surprising finding was recently published in the renowned American journal CELL, by an international team of scientists led by plant geneticists from the Universities of Zurich and Montpellier.

Silenced Paternal Genes

For their analysis, the Zürich scientists crossed two genetically distinguishable races of the model plant Arabidopsis thaliana (tale cress) and analyzed the relative contributions of the parental genomes shortly after the first division of the fertilized egg. Such molecular genetic analyses of plant embryos at very early stages are technically challenging, which explains why up to now researchers resorted to studying embryos at later stages. But Ueli Grossniklaus, Professor for Plant Developmental Genetics at University of Zurich, has a marked preference for tackling experimentally challenging problems, including the study of gametes and very young embryos that are hard to obtain.

Using "Next Generation Sequencing", a novel and powerful technology, Grossniklaus and colleagues were able to show that in an early phase of plant embryo development, predominantly maternal genes are active. Via small ribonucleic acid molecules (siRNAs), the maternal genome controls paternal genes to ensure that, initially, most remain inactive.

In the course of development, paternal genes are sucessively activated, which also requires the activity of maternal factors. This finding is surprising because it contradicts earlier findings, which suggested that these siRNAs have a specifc role in preventing "jumping genes" (transposons) to move within the genome.

According to Grossniklaus, the transient silencing of the paternal contribution during early development of the offspring is in the mother plant’s best interest: the mother invests considerable resources into the formation of seeds. Before making this investment, the mother verifies the paternal contribution to the progeny for compatibility with her own genome. If the father’s genome is too divergent from her own, e.g., originating from a different species, the embryo will die.

In fact, the two parental plants have opposing interests with regard to their offspring. The pollen-donating father is interested in maximizing transfer of resources from the mother to the offspring. By contrast, the mother plant aims at optimizing the match with the fathers genome in order to prevent a waste of resources. „We are dealing with a classical parental conflict“, Ueli Grossniklaus summarizes the opposing interests.

Maternal Control May Ensure the Maintenance of Species Boundaries

Maternally active genes direct and control early embryogenesis. Genetic incompatibility will cause embryos to abort, such that fertilization with pollen from other plant species is not successful. Therefore, the mechanism unraveled by Grossniklaus and colleagues may play an important role in the maintenance of species barriers. This may also explain why attempts to cross crop plants with their wild relatives, e.g., to transfer disease-resistance genes present in wild relatives to crops, often fail early in embryogenesis. A genetic divergence between the parents that is too large may be recognized by this novel mechanism, leading to embryo abortion. Commercial crop breeders will thus be interested in finding out how the maternal control of early plant embryo development can be circumvented in their breeding programs.

Reference:
Daphné Autran, Célia Baroux, Michael T. Raissig, Thomas Lenormand, Michael Wittig, Stefan Grob, Andrea Steimer, Matthias Barann, Ulrich C. Klostermeier, Olivier Leblanc, Jean-Philippe Vielle-Calzada, Philip Rosenstiel, Daniel Grimanelli and Ueli Grossniklaus, Maternal Epigenetic Pathways Control Parental Contributions to Arabidopsis Early Embryogenesis, Cell (2011), doi: 10.1016/j.cell.2011.04014.
Contact:
Prof. Dr. Ueli Grossniklaus, University of Zürich, Institute of Plant Biology, Tel. +41 44 634 82 40

E-Mail: grossnik@botinst.uzh.ch

Beat Müller | idw
Further information:
http://www.mediadesk.uzh

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>