Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parental Conflict in Plants: Maternal Factors Silence Paternal Genes

30.05.2011
In flowering plants, the beginning of embryogenesis is almost exclusively governed by maternal gene activity. Maternal factors regulate the development of the embryo and silence paternal genes during early stages of development.

This finding – obtained using next generation sequencing technology – was reported by an international team of researchers including plant geneticists from the University of Zurich. This newly uncovered mechanism may be involved in the maintenance of species boundaries and could play an important role in the development of novel crop varieties.

Mother and father each contribute one half of the genetic information to their offspring. Thus, it was thought that both parents contribute equally to the development of the next generation. Indeed, this holds true for late stages of embryo development in plants, but early on, things are quite different: during the earliest phase of embryo development - from the fertilized egg to the globular stage - predominantly the maternal genes are active. This phase of development is controlled largely by maternal factors, which actively repress or silence the genes inherited from the father. This surprising finding was recently published in the renowned American journal CELL, by an international team of scientists led by plant geneticists from the Universities of Zurich and Montpellier.

Silenced Paternal Genes

For their analysis, the Zürich scientists crossed two genetically distinguishable races of the model plant Arabidopsis thaliana (tale cress) and analyzed the relative contributions of the parental genomes shortly after the first division of the fertilized egg. Such molecular genetic analyses of plant embryos at very early stages are technically challenging, which explains why up to now researchers resorted to studying embryos at later stages. But Ueli Grossniklaus, Professor for Plant Developmental Genetics at University of Zurich, has a marked preference for tackling experimentally challenging problems, including the study of gametes and very young embryos that are hard to obtain.

Using "Next Generation Sequencing", a novel and powerful technology, Grossniklaus and colleagues were able to show that in an early phase of plant embryo development, predominantly maternal genes are active. Via small ribonucleic acid molecules (siRNAs), the maternal genome controls paternal genes to ensure that, initially, most remain inactive.

In the course of development, paternal genes are sucessively activated, which also requires the activity of maternal factors. This finding is surprising because it contradicts earlier findings, which suggested that these siRNAs have a specifc role in preventing "jumping genes" (transposons) to move within the genome.

According to Grossniklaus, the transient silencing of the paternal contribution during early development of the offspring is in the mother plant’s best interest: the mother invests considerable resources into the formation of seeds. Before making this investment, the mother verifies the paternal contribution to the progeny for compatibility with her own genome. If the father’s genome is too divergent from her own, e.g., originating from a different species, the embryo will die.

In fact, the two parental plants have opposing interests with regard to their offspring. The pollen-donating father is interested in maximizing transfer of resources from the mother to the offspring. By contrast, the mother plant aims at optimizing the match with the fathers genome in order to prevent a waste of resources. „We are dealing with a classical parental conflict“, Ueli Grossniklaus summarizes the opposing interests.

Maternal Control May Ensure the Maintenance of Species Boundaries

Maternally active genes direct and control early embryogenesis. Genetic incompatibility will cause embryos to abort, such that fertilization with pollen from other plant species is not successful. Therefore, the mechanism unraveled by Grossniklaus and colleagues may play an important role in the maintenance of species barriers. This may also explain why attempts to cross crop plants with their wild relatives, e.g., to transfer disease-resistance genes present in wild relatives to crops, often fail early in embryogenesis. A genetic divergence between the parents that is too large may be recognized by this novel mechanism, leading to embryo abortion. Commercial crop breeders will thus be interested in finding out how the maternal control of early plant embryo development can be circumvented in their breeding programs.

Reference:
Daphné Autran, Célia Baroux, Michael T. Raissig, Thomas Lenormand, Michael Wittig, Stefan Grob, Andrea Steimer, Matthias Barann, Ulrich C. Klostermeier, Olivier Leblanc, Jean-Philippe Vielle-Calzada, Philip Rosenstiel, Daniel Grimanelli and Ueli Grossniklaus, Maternal Epigenetic Pathways Control Parental Contributions to Arabidopsis Early Embryogenesis, Cell (2011), doi: 10.1016/j.cell.2011.04014.
Contact:
Prof. Dr. Ueli Grossniklaus, University of Zürich, Institute of Plant Biology, Tel. +41 44 634 82 40

E-Mail: grossnik@botinst.uzh.ch

Beat Müller | idw
Further information:
http://www.mediadesk.uzh

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>