Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasitic wasps' newly sequenced genomes reveal new avenues for pest control

15.01.2010
Provides insights into evolution, genetics

Researchers from the University of Geneva and the SIB Swiss Institute of Bioinformatics led an analysis of the sequenced genomes of parasitic wasps. Generally unknown to the public, the parasitic wasps kill pest insects. They are like 'smart bombs' that seek out and kill only specific kinds of insects.

Harnessing their full potential would thus be vastly preferable to chemical pesticides, which broadly kill or poison many organisms in the environment, including humans. The results of this large study are featured in today's issue of Science. Professor Evgeny Zdobnov from the University of Geneva Medical School and the SIB Swiss Institute of Bioinformatics directed the comparative evolutionary genomics studies as part of this international project, which revealed many features that could be useful to pest control and medicine, and to enhance our understanding of genetics and evolution.

The scientists sequenced and analysed the genomes of three parasitoid Nasonia wasp species. "Comparing the genes and genomes of those wasps revealed almost 7'000 genes that have recognisable counterparts in humans (orthologues)", says Zdobnov. "However, the wasp is more different from its closest sequenced relative, the honeybee, than humans are from chickens". In addition to being useful for controlling pests and offering pharmaceutically interesting venoms, the wasps could act as a new genetic system with a number of unique advantages. So far, fruit flies have been the standard model for genetic studies, mainly because they are small, can be grown easily in a laboratory, and reproduce quickly. On top of sharing these traits, Nasonia present another advantage. Male Nasonia have only one set of chromosomes, instead of two sets like fruit flies and people, so that "A single set of chromosomes, which is more commonly found in lower single-celled organisms such as yeast, is a handy genetic tool, particularly for studying how genes interact with each other," says John H. Werren from the University of Rochester, who led the project together with Stephen Richards from the Genome Sequencing Centre at the Baylor College of Medicine.

Unlike fruit flies, these wasps also modify their DNA in ways similar to humans and other vertebrates, a process called "methylation" which plays an important role in regulating how genes are turned on and off during development. "Importantly", says Zdobnov, "our comparative analyses discovered hundreds of Nasonia genes that are shared with humans but absent from fruit flies, opening new avenues for their functional investigation in these genetically tractable wasps". "We identified changes to metabolic pathways that may reflect the amino-acid rich carnivorous diet of these parasitoids. Such information could support efforts to produce artificial diets for parasitoid wasp mass rearing in biological control and improve hymenopteran cell culture methods".

Emerging from these genome studies are many opportunities for exploiting Nasonia wasps in topics ranging from pest control to medicine, genetics, and evolution. "Insects are the most diverse group of terrestrial animals", says Zdobnov, "and the sequencing of the wasp genome significantly augments the opportunities for scientists to examine the genetic basis of this incredible diversity that underlies their success".

About SIB

The SIB Swiss Institute of Bioinformatics is an academic not-for-profit foundation federating bioinformatics activities throughout Switzerland. Its two-fold mission is to provide world-class core bioinformatics resources to the national and international life science research community in key fields such as genomics, proteomics and systems biology; as well as to lead and coordinate the field of bioinformatics in Switzerland. It has a long-standing tradition of producing state-of-the-art software for the life science research community, as well as carefully annotated databases. The SIB includes 29 world-class research and service groups, which gather close to 400 researchers, in the fields of proteomics, transcriptomics, genomics, systems biology, structural bioinformatics, evolutionary bioinformatics, modelling, imaging, biophysics, and population genetics in Geneva, Lausanne, Berne, Basel and Zurich. SIB expertise is widely appreciated and its services are used by life science researchers worldwide.

Contacts

Professeur Evgeny Zdobnov,
Computational Evolutionary Genomics
Université de Genève
Dp Med. Génétique et Développement
CMU - 1, rue Michel Servet
1211 Geneva 4
Email Evgeny.Zdobnov@unige.ch
Telephone +41 (0)22 379 59 73
www.unige.ch
Irène Perovsek, Head of Communications
SIB Swiss Institute of Bioinformatics
Quartier Sorge, Bâtiment Génopode / CH-1015 Lausanne / Switzerland
Email irene.perovsek @isb-sib.ch
Telephone +41 21 692 40 54

Irene Perovsek | EurekAlert!
Further information:
http://www.isb-sib.ch

More articles from Life Sciences:

nachricht Viruses support photosynthesis in bacteria – an evolutionary advantage?
23.02.2017 | Technische Universität Kaiserslautern

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Viruses support photosynthesis in bacteria – an evolutionary advantage?

23.02.2017 | Life Sciences

Researchers pave the way for ionotronic nanodevices

23.02.2017 | Power and Electrical Engineering

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>