Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasitic wasps' newly sequenced genomes reveal new avenues for pest control

15.01.2010
Provides insights into evolution, genetics

Researchers from the University of Geneva and the SIB Swiss Institute of Bioinformatics led an analysis of the sequenced genomes of parasitic wasps. Generally unknown to the public, the parasitic wasps kill pest insects. They are like 'smart bombs' that seek out and kill only specific kinds of insects.

Harnessing their full potential would thus be vastly preferable to chemical pesticides, which broadly kill or poison many organisms in the environment, including humans. The results of this large study are featured in today's issue of Science. Professor Evgeny Zdobnov from the University of Geneva Medical School and the SIB Swiss Institute of Bioinformatics directed the comparative evolutionary genomics studies as part of this international project, which revealed many features that could be useful to pest control and medicine, and to enhance our understanding of genetics and evolution.

The scientists sequenced and analysed the genomes of three parasitoid Nasonia wasp species. "Comparing the genes and genomes of those wasps revealed almost 7'000 genes that have recognisable counterparts in humans (orthologues)", says Zdobnov. "However, the wasp is more different from its closest sequenced relative, the honeybee, than humans are from chickens". In addition to being useful for controlling pests and offering pharmaceutically interesting venoms, the wasps could act as a new genetic system with a number of unique advantages. So far, fruit flies have been the standard model for genetic studies, mainly because they are small, can be grown easily in a laboratory, and reproduce quickly. On top of sharing these traits, Nasonia present another advantage. Male Nasonia have only one set of chromosomes, instead of two sets like fruit flies and people, so that "A single set of chromosomes, which is more commonly found in lower single-celled organisms such as yeast, is a handy genetic tool, particularly for studying how genes interact with each other," says John H. Werren from the University of Rochester, who led the project together with Stephen Richards from the Genome Sequencing Centre at the Baylor College of Medicine.

Unlike fruit flies, these wasps also modify their DNA in ways similar to humans and other vertebrates, a process called "methylation" which plays an important role in regulating how genes are turned on and off during development. "Importantly", says Zdobnov, "our comparative analyses discovered hundreds of Nasonia genes that are shared with humans but absent from fruit flies, opening new avenues for their functional investigation in these genetically tractable wasps". "We identified changes to metabolic pathways that may reflect the amino-acid rich carnivorous diet of these parasitoids. Such information could support efforts to produce artificial diets for parasitoid wasp mass rearing in biological control and improve hymenopteran cell culture methods".

Emerging from these genome studies are many opportunities for exploiting Nasonia wasps in topics ranging from pest control to medicine, genetics, and evolution. "Insects are the most diverse group of terrestrial animals", says Zdobnov, "and the sequencing of the wasp genome significantly augments the opportunities for scientists to examine the genetic basis of this incredible diversity that underlies their success".

About SIB

The SIB Swiss Institute of Bioinformatics is an academic not-for-profit foundation federating bioinformatics activities throughout Switzerland. Its two-fold mission is to provide world-class core bioinformatics resources to the national and international life science research community in key fields such as genomics, proteomics and systems biology; as well as to lead and coordinate the field of bioinformatics in Switzerland. It has a long-standing tradition of producing state-of-the-art software for the life science research community, as well as carefully annotated databases. The SIB includes 29 world-class research and service groups, which gather close to 400 researchers, in the fields of proteomics, transcriptomics, genomics, systems biology, structural bioinformatics, evolutionary bioinformatics, modelling, imaging, biophysics, and population genetics in Geneva, Lausanne, Berne, Basel and Zurich. SIB expertise is widely appreciated and its services are used by life science researchers worldwide.

Contacts

Professeur Evgeny Zdobnov,
Computational Evolutionary Genomics
Université de Genève
Dp Med. Génétique et Développement
CMU - 1, rue Michel Servet
1211 Geneva 4
Email Evgeny.Zdobnov@unige.ch
Telephone +41 (0)22 379 59 73
www.unige.ch
Irène Perovsek, Head of Communications
SIB Swiss Institute of Bioinformatics
Quartier Sorge, Bâtiment Génopode / CH-1015 Lausanne / Switzerland
Email irene.perovsek @isb-sib.ch
Telephone +41 21 692 40 54

Irene Perovsek | EurekAlert!
Further information:
http://www.isb-sib.ch

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>