Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasite causes zombie ants to die in an ideal spot

14.08.2009
A study in the September issue of The American Naturalist describes new details about a fungal parasite that coerces ants into dying in just the right spot¡ªone that is ideal for the fungus to grow and reproduce. The study, led David P. Hughes of Harvard University, shows just how precisely the fungus manipulates the behavior of its hapless hosts.

When a carpenter ant is infected by a fungus known as Ophiocordyceps unilateralis, the victim remains alive for a short time. The fungus, however, is firmly in the driver's seat.

It compels the ant to climb from its nest high in the forest canopy down into small plants and saplings in the understory vegetation. The ant then climbs out onto the underside of a low-hanging leaf where it clamps down with its mandibles just before it dies. There it remains, stuck fast for weeks.

After the ant dies, the fungus continues to grow inside the body. After a few days, a stroma¡ªthe fungus's fruiting body¡ªsprouts from the back of the ant's head. After a week or two, the stroma starts raining down spores to the forest floor below. Each spore has the potential to infect another unfortunate passerby.

Scientists have known for over one hundred years about this parasite's ghastly ability to turn unsuspecting ants into zombies. But Hughes and his colleagues chronicle the amazingly precise control the fungus has over its victim.

At a field site in a Thai forest, Hughes's team found that the infected carpenter ants are almost invariably found clamped onto the undersides of leaves that are 25 centimeters (about 10 inches) from the ground below. What's more, most of the dead ants were found on leaves sprouting from the northwest side of the plant. Interestingly, the researchers found that temperature, humidity and sunlight in these spots are apparently optimal for the fungus to grow and reproduce. When the researchers placed leaves with infected ants at higher locations, or on the forest floor, the parasite failed to develop properly.

"The fungus accurately manipulates the infected ants into dying where the parasite prefers to be, by making the ants travel a long way during the last hours of their lives," Hughes said.

But getting the ant to die in the right spot is only half the battle, as the researchers found when they dissected a few victims.

"The fungus has evolved a suite of novel strategies to retain possession of its precious resource," said Hughes.

As the fungus spreads within a dead ant's body, it converts the ant's innards into sugars which are used to help the fungus grow. But it leaves the muscles controlling the mandibles intact to make sure the ant keeps its death grip on the leaf. The fungus also preserves the ant's outer shell, growing into cracks and crevices to reinforce weak spots. In doing this, the fungus fashions a protective coating that keeps microbes and other fungi out. At that point, it can safely get down to the business of claiming new victims.

Carpenter ants apparently have few defenses against the fungus. The most important way they avoid infection seems to be staying as far away from victims as possible. That may be part of the reason why these ants make their nests in the forest canopy, high above fungal breeding zones. Carpenter ants also seem to avoid blazing their foraging trails under infected areas. This too might be an adaptive strategy to avoid infection, but more study is needed to confirm it, Hughes says.

The mechanisms and cues the fungus uses to control an ant's behavior remain unknown. "That is another research area we are actively pursuing right now," Hughes says. Whatever the mechanisms, this much is clear: O. unilateralis has evolved highly specialized abilities to get unsuspecting ants to do its bidding.

Sandra B. Andersen, Sylvia Gerritsma, Kalsum M. Yusah, David Mayntz, Nigel L. Hywel©Jones, Johan Billen, Jacobus J. Boomsma, and David P. Hughes, "The Life of a Dead Ant: The Expression of an Adaptive Extended Phenotype." The American Naturalist, September 2009.

Kevin Stacey | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>