Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasite causes zombie ants to die in an ideal spot

14.08.2009
A study in the September issue of The American Naturalist describes new details about a fungal parasite that coerces ants into dying in just the right spot¡ªone that is ideal for the fungus to grow and reproduce. The study, led David P. Hughes of Harvard University, shows just how precisely the fungus manipulates the behavior of its hapless hosts.

When a carpenter ant is infected by a fungus known as Ophiocordyceps unilateralis, the victim remains alive for a short time. The fungus, however, is firmly in the driver's seat.

It compels the ant to climb from its nest high in the forest canopy down into small plants and saplings in the understory vegetation. The ant then climbs out onto the underside of a low-hanging leaf where it clamps down with its mandibles just before it dies. There it remains, stuck fast for weeks.

After the ant dies, the fungus continues to grow inside the body. After a few days, a stroma¡ªthe fungus's fruiting body¡ªsprouts from the back of the ant's head. After a week or two, the stroma starts raining down spores to the forest floor below. Each spore has the potential to infect another unfortunate passerby.

Scientists have known for over one hundred years about this parasite's ghastly ability to turn unsuspecting ants into zombies. But Hughes and his colleagues chronicle the amazingly precise control the fungus has over its victim.

At a field site in a Thai forest, Hughes's team found that the infected carpenter ants are almost invariably found clamped onto the undersides of leaves that are 25 centimeters (about 10 inches) from the ground below. What's more, most of the dead ants were found on leaves sprouting from the northwest side of the plant. Interestingly, the researchers found that temperature, humidity and sunlight in these spots are apparently optimal for the fungus to grow and reproduce. When the researchers placed leaves with infected ants at higher locations, or on the forest floor, the parasite failed to develop properly.

"The fungus accurately manipulates the infected ants into dying where the parasite prefers to be, by making the ants travel a long way during the last hours of their lives," Hughes said.

But getting the ant to die in the right spot is only half the battle, as the researchers found when they dissected a few victims.

"The fungus has evolved a suite of novel strategies to retain possession of its precious resource," said Hughes.

As the fungus spreads within a dead ant's body, it converts the ant's innards into sugars which are used to help the fungus grow. But it leaves the muscles controlling the mandibles intact to make sure the ant keeps its death grip on the leaf. The fungus also preserves the ant's outer shell, growing into cracks and crevices to reinforce weak spots. In doing this, the fungus fashions a protective coating that keeps microbes and other fungi out. At that point, it can safely get down to the business of claiming new victims.

Carpenter ants apparently have few defenses against the fungus. The most important way they avoid infection seems to be staying as far away from victims as possible. That may be part of the reason why these ants make their nests in the forest canopy, high above fungal breeding zones. Carpenter ants also seem to avoid blazing their foraging trails under infected areas. This too might be an adaptive strategy to avoid infection, but more study is needed to confirm it, Hughes says.

The mechanisms and cues the fungus uses to control an ant's behavior remain unknown. "That is another research area we are actively pursuing right now," Hughes says. Whatever the mechanisms, this much is clear: O. unilateralis has evolved highly specialized abilities to get unsuspecting ants to do its bidding.

Sandra B. Andersen, Sylvia Gerritsma, Kalsum M. Yusah, David Mayntz, Nigel L. Hywel©Jones, Johan Billen, Jacobus J. Boomsma, and David P. Hughes, "The Life of a Dead Ant: The Expression of an Adaptive Extended Phenotype." The American Naturalist, September 2009.

Kevin Stacey | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>