Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasite wasps have practiced gene therapy for a hundred million years

18.02.2009
Braconid parasite wasps and their caterpillar hosts form a unique host-parasite model: the wasps lay their eggs inside the caterpillars and simultaneously inject some viral particles to get around the host's defenses and control its physiology.

The genes from these viral particles have now been identified in the wasp's own genome by a team at the Institut de recherche sur la biologie de l'insecte (CNRS/Université François-Rabelais Tours), in collaboration with a laboratory at University of Berne and Genoscope d'Evry.

These genes came from a virus captured by a common ancestor of these wasps 100 million years ago. These results, published in Science 13 February 2009, could provide new means of designing transfer vectors for gene therapy.

Wasps of the family Braconidae reproduce by laying their eggs in caterpillars, which then serve as food for the developing wasp larvae (1). However, the body of a caterpillar is a hostile environment, with an efficient defense system that forms a capsule of immune cells around foreign objects. To get around these defenses, when the wasp lays her eggs in the caterpillar, she also injects some special particles made in her ovaries. These particles enter the caterpillar's cells where they induce immunosuppression and control development, allowing the wasp larvae to survive.

Although many examples of symbiotic bacteria are known, the present case of a parasitic species using a virus to control its host's physiology is unique. To improve our understanding of the phenomenon, researchers at the Institut de recherche sur la biologie de l'insecte (CNRS/Université François-Rabelais Tours) are studying these viral particles in detail. In previous work, they had questioned whether the particles were truly viral, as they found that the particle genome lacked the necessary machinery for replication usually found in viruses.

Their most recent findings, published in Science, show that the particles are indeed viral in nature, but that their components lie within the wasp's own genome. More that twenty different genes coding for characteristic components of nudiviruses - insect viruses often used in biological pest control - are expressed in the wasps' ovaries. Furthermore, these genes are conserved in the different kinds of wasp that make these particles.

The results indicate that the ancestor of the braconid wasps integrated the genome of a nudivirus into its own genome. Although these genes continue to produce viral particles, the particles now deliver the wasp's own virulence genes into the parasitized host.

The wasps have therefore "domesticated" a virus to turn it into a vector for transferring their genes. Study of this phenomenon is particularly interesting for the development of new vectors for gene therapy, a therapeutic technique that consists of inserting genes into an individual's cells or tissues to treat an illness. Genes are delivered using a deactivated virus as a vector. The particles from parasite wasps are in fact true "natural" vectors, selected over 100 million years to perform this function and capable of transferring large quantities of genetic material (more than 150 genes). Understanding how they work could therefore be very useful for the design of new therapeutic vectors.

(1) The wasp pierces the caterpillar's skin with a sort of stylet, called an auger. It then lays its eggs inside the body, and the wasp larvae then develop in the caterpillar's blood, on which they feed

Julien Guillaume | alfa
Further information:
http://www.cnrs.fr

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>