Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasite wasps have practiced gene therapy for a hundred million years

18.02.2009
Braconid parasite wasps and their caterpillar hosts form a unique host-parasite model: the wasps lay their eggs inside the caterpillars and simultaneously inject some viral particles to get around the host's defenses and control its physiology.

The genes from these viral particles have now been identified in the wasp's own genome by a team at the Institut de recherche sur la biologie de l'insecte (CNRS/Université François-Rabelais Tours), in collaboration with a laboratory at University of Berne and Genoscope d'Evry.

These genes came from a virus captured by a common ancestor of these wasps 100 million years ago. These results, published in Science 13 February 2009, could provide new means of designing transfer vectors for gene therapy.

Wasps of the family Braconidae reproduce by laying their eggs in caterpillars, which then serve as food for the developing wasp larvae (1). However, the body of a caterpillar is a hostile environment, with an efficient defense system that forms a capsule of immune cells around foreign objects. To get around these defenses, when the wasp lays her eggs in the caterpillar, she also injects some special particles made in her ovaries. These particles enter the caterpillar's cells where they induce immunosuppression and control development, allowing the wasp larvae to survive.

Although many examples of symbiotic bacteria are known, the present case of a parasitic species using a virus to control its host's physiology is unique. To improve our understanding of the phenomenon, researchers at the Institut de recherche sur la biologie de l'insecte (CNRS/Université François-Rabelais Tours) are studying these viral particles in detail. In previous work, they had questioned whether the particles were truly viral, as they found that the particle genome lacked the necessary machinery for replication usually found in viruses.

Their most recent findings, published in Science, show that the particles are indeed viral in nature, but that their components lie within the wasp's own genome. More that twenty different genes coding for characteristic components of nudiviruses - insect viruses often used in biological pest control - are expressed in the wasps' ovaries. Furthermore, these genes are conserved in the different kinds of wasp that make these particles.

The results indicate that the ancestor of the braconid wasps integrated the genome of a nudivirus into its own genome. Although these genes continue to produce viral particles, the particles now deliver the wasp's own virulence genes into the parasitized host.

The wasps have therefore "domesticated" a virus to turn it into a vector for transferring their genes. Study of this phenomenon is particularly interesting for the development of new vectors for gene therapy, a therapeutic technique that consists of inserting genes into an individual's cells or tissues to treat an illness. Genes are delivered using a deactivated virus as a vector. The particles from parasite wasps are in fact true "natural" vectors, selected over 100 million years to perform this function and capable of transferring large quantities of genetic material (more than 150 genes). Understanding how they work could therefore be very useful for the design of new therapeutic vectors.

(1) The wasp pierces the caterpillar's skin with a sort of stylet, called an auger. It then lays its eggs inside the body, and the wasp larvae then develop in the caterpillar's blood, on which they feed

Julien Guillaume | alfa
Further information:
http://www.cnrs.fr

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New bioimaging technique is fast and economical

21.08.2017 | Medical Engineering

Silk could improve sensitivity, flexibility of wearable body sensors

21.08.2017 | Materials Sciences

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>