Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paradigm shift in the research field of photoreceptor transplantation

06.10.2016

Paradigm shift in the research field of photoreceptor transplantation: mechanism improving the function of the retina works different than previously assumed

The research group of Prof. Dr. Marius Ader, group leader at the DFG-Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence at TU Dresden, introduces a new understanding of the mechanism of cell transplantations that aim to improve retinal function. Affected retinal degenerative diseases are for example age-related macular degeneration (AMD) and Retinitis Pigmentosa (RP) with a current total of approximately 1.6 million patients affected in Germany.


See press release.

© CRTD

Dresden. The study presented here describes a paradigm shift in the research field of photoreceptor transplantation. Photoreceptors comprise the rods and cones in the retina. Whereas rods are responsible for vision in dim light conditions (“night vision”), cones are responsible for daylight vision and color recognition. In case of retinal degenerative diseases, usually the photoreceptors are affected – leading to clinical conditions like age-related macular degeneration (AMD) or Retinitis Pigmentosa (RP).

First AMD symptoms comprise a blurred and distorted perception in the center of the visual field due to dysfunction and loss of cones. This leads to difficulties in the recognition of people and to a loss of the reading ability. AMD is the most common cause for blindness in Germany. On the other hand, RP leads to a gradual reduction of the visual field due to rod photoreceptor dysfunction and death.

The affected patients develop a “tunnel vision” that leads step by step to a complete blindness as cones are finally also lost. The high number of affected patients, with about 5000 new cases of registered blindness every year, emphasizes the relevance of research in this field.

The study introduced here examines the mechanism underlying the rescue of retinal function observed previously in mouse models of retinal degeneration. With respect to the transplantation of photoreceptors, it was assumed that there is a structural integration of donor photoreceptors into the retinal tissue resulting in functional replacement of endogenous photoreceptors (“cell replacement therapy”). The results presented here show that this is not the case.

The donor cells actually remain at the injection site and instead transfer cell material to endogenous photoreceptors of the recipient. This is a new, unexpected mechanism of cell material transfer between donor and recipient photoreceptors and its potential for the development as a therapy needs to be examined in further detail now (“cell support therapy”).

Further studies carried out by Professor Ader and his research team aim to identify the cellular and molecular preconditions for this process. “Our results open up a potential new therapeutic approach for the treatment of retinal degenerations. Donor cells might support remaining but dysfunctional photoreceptors instead of replacing them.”, Professor Ader explains.

Since 2007, Marius Ader is working as a research group leader at the CRTD. From 2003-2007 he worked as a Senior-Postdoctoral Fellow at the Smurfit Institute of Genetics, Trinity College Dublin (Ireland). Between 2000 and 2003 he was active as a postdoctoral fellow at the Universitätsklinikum Hamburg-Eppendorf (UKE) and the Zentrum für Molekulare Neurobiologie Hamburg (ZMNH).

Publication
Santos-Ferreira T*, Llonch S*, Borsch O*, Postel K, Haas J, Ader M. Retinal transplantation of photoreceptors results in donor–host cytoplasmic exchange. Nat. Commun. 7, 13028. doi: 10.1038/ncomms13028 (2016).

Press Contact

Franziska Clauß, M.A.
Press Officer
Phone: +49 351 458 82065
E-Mail: franziska.clauss@crt-dresden.de

Founded in 2006, the DFG Research Center for Regenerative Therapies Dresden (CRTD), Cluster of Excellence at the TU Dresden has now passed the second phase of the Excellence Initiative which aims to promote top-level research and improve the quality of German universities and research institutions. The goal of the CRTD is to explore the human body's regenerative potential and to develop completely new, regenerative therapies for hitherto incurable diseases. The key areas of research include haematology and immunology, diabetes, neurodegenerative diseases, and bone regeneration. At present, eight professors and ten group leaders are working at the CRTD – integrated into an interdisciplinary network of 87 members at seven different institutions within Dresden. In addition, 21 partners from industry are supporting the network. The synergies in the network allow for a fast translation of results from basic research to clinical applications.

www.crt-dresden.de

Franziska Clauß | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>