Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New paradigm identifies gene responsible for acetaminophen-induced liver injury

06.05.2009
Acetaminophen (Tylenol and generics) is one of the most commonly used over-the-counter drugs in the United States. While generally safe, acetaminophen is known to cause severe liver injury if taken in high doses.

But likely due to genetics, even the recommended dose can induce serious liver damage in a significant number of people. In a study published online in Genome Research, scientists have found a genetic marker linked to the risk of acetaminophen-induced liver injury, using a strategy that will help develop safer drugs in the future.

Acetaminophen is considered safe over long-term use, but recent studies have indicated that even over a relatively short period, the maximum allowable dose can induce elevated levels of the liver enzyme ALT in blood serum in approximately one third of healthy individuals, suggesting possible liver injury.

It is possible that if given high doses, many of these individuals would be susceptible to acute liver failure. There is likely to be a genetic predisposition, but finding the variants by scanning human subjects alone can be very difficult, requiring large studies with many participants. But with a little help from mice, researchers can overcome these experimental hurdles.

In this study, a team of researchers led by Dr. David Threadgill of North Carolina State University utilized mouse genetics to aid the search for candidate genes linked to acetaminophen-induced liver injury in humans. "We approached the study from the perspective that drugs are used in very heterogeneous patient populations, and that drug-induced toxicities are likely the result of a person's genetic makeup," Threadgill explained. The group used a genetically diverse population of mice to model human genetic variation, taking advantage of the known genetic differences in these strains to find genes linked to variable responses to acetaminophen treatment.

Once Threadgill and colleagues narrowed their search to a few candidate genes in mouse, they sequenced the genetic code of the counterparts of the same genes in human patients exhibiting elevated levels of serum ALT in response to acetaminophen. They found that a single letter change to the DNA sequence in one of these candidate genes, called CD44, is significantly associated with elevated serum ALT in these patients. While the role of this gene in liver toxicity is not yet known, CD44 could serve as a potentially useful marker to identify people at risk for acetaminophen-induced liver damage.

Threadgill noted that in addition to the identification of a gene linked to acetaminophen-induced liver injury, this study has broader implications for drug testing, as up until now, genetic differences in humans has not been considered in pre-clinical tests using animal models. "If genetic differences are included in early safety testing, more accurate predictions of clinical response will be obtained," said Threadgill. "The end result will be safer drugs."

Scientists from the University of North Carolina (Chapel Hill, NC), the Genomics Institute of the Novartis Research Foundation (San Diego, CA), the Jackson Laboratory (Bar Harbor, ME), the National Institute of Environmental Health Sciences (Research Triangle Park, NC), Verto Institute Research Laboratories (New Brunswick, NJ), the Cancer Institute of New Jersey (New Brunswick, NJ), Purdue Pharma (Stamford, CT), and North Carolina State University (Raleigh, NC) contributed to this study.

This work was supported by the National Institutes of Health and the Environmental Protection Agency.

Media contacts: David Threadgill, Ph.D. (threadgill@ncsu.edu, +1-919-515-2292) is available for more information.

Interested reporters may obtain copies of the manuscript from Robert Majovski, Ph.D., Assistant Editor, Genome Research (majovski@cshl.edu).

About the article: The manuscript will be published online ahead of print on May 5, 2009. Its full citation is as follows: Harrill, A.H., Watkins, P.B., Su, S., Ross, P.K., Harbourt, D.E., Stylianou, I.M., Boorman, G.A., Russo, M.W., Sackler, R.S., Harris, S.C., Contractor, T., Wiltshire, T., Rusyn, I., and Threadgill, D.W. Mouse population-guided resequencing reveals that variants in CD44 contribute to acetaminophen-induced liver injury in humans. Genome Res. doi:10.1101/gr.090241.108.

About Genome Research:

Launched in 1995, Genome Research (www.genome.org) is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine. Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.

About Cold Spring Harbor Laboratory Press:

Cold Spring Harbor Laboratory is a private, nonprofit institution in New York that conducts research in cancer and other life sciences and has a variety of educational programs. Its Press, originating in 1933, is the largest of the Laboratory's five education divisions and is a publisher of books, journals, and electronic media for scientists, students, and the general public.

Genome Research issues press releases to highlight significant research studies that are published in the journal.

Robert Majovski | EurekAlert!
Further information:
http://www.cshl.edu
http://www.genome.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>