Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Papillomavirus silences innate immune response

07.12.2009
In the 1980s, Harald zur Hausen and his co-workers discovered that specific types of human papillomavirus (HPV) cause cervical cancer. Scientists soon found out how these pathogens cause cells to degenerate. It is known today that the main culprits are viral proteins E6 and E7. Both proteins switch off different cellular control functions, thus promoting cell growth.

Professor Dr. Frank Rösl and his co-workers at DKFZ have now discovered another mechanism by which the E6 oncoprotein of high-risk HPV16 promotes carcinogenesis. The oncogene silences production of an immune protein called interferon-kappa.

Interferons are proteins which are part of our immune system and are responsible primarily for stimulating the immune response to viruses and tumors. Interferons are produced by white blood cells and other cell types. Interferon-kappa is relevant for HPV infections, because it is produced mainly in cells of the skin and mucosa (keratinocytes) which are the preferred hosts of the viruses. If interferon-kappa is not working in cells, other proteins involved in immune defense also cease to function properly.

Dr. Bladimiro Rincon-Orozco of Rösl's team has now shown for the first time that HPV16 switches off the interferon-kappa gene by biochemical modification of DNA. Such alterations of the genetic material are called epigenetic mutations. Studying HPV infected cells in a culture dish, the research team observed that interferon-kappa is epigenetically silenced. They were later able to confirm this result in cervical cancer tissue samples.

"Interferon-kappa is an important part of what is called innate immunity," Frank Rösl explains. Using this evolutionary old defense mechanism, the body can defend itself immediately after being infected with pathogenic agents, while formation of the specific "acquired" immune system may take some time. "By switching off the interferon production, the viruses prevent infected cells from being destroyed by this type of immune response," says Rösl, explaining the strategy of the virus that causes cancer. In the next step, the researchers are planning to investigate whether administering interferon-kappa can slow down the growth of cervical cancer cells and may thus support treatment of the disease.

Legend: Electron micrograph of human papilloma viruses

Credit: Hanswalter Zentgraf, German Cancer Research Center

Bladimiro Rincon-Orozco, Gordana Halec, Simone Rosenberger, Dorothea Muschik, Ingo Nindl, Anastasia Bachmann, Tina Maria Ritter, Bolormaa Dondog, Regina Ly, Franz X. Bosch, Rainer Zawatzky und Frank Rösl: Epigenetic Silencing of Interferon-κ in Human Papillomavirus Type 16–Positive Cells. Cancer Res 2009; 69: (22) November 15, 2009

The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is the largest biomedical research institute in Germany and is a member of the Helmholtz Association of National Research Centers. More than 2,000 staff members, including 850 scientists, are investigating the mechanisms of cancer and are working to identify cancer risk factors. They provide the foundations for developing novel approaches in the prevention, diagnosis, and treatment of cancer. In addition, the staff of the Cancer Information Service (KID) offers information about the widespread disease of cancer for patients, their families, and the general public. The Center is funded by the German Federal Ministry of Education and Research (90%) and the State of Baden-Württemberg (10%).

Dr. Sibylle Kohlstädt | EurekAlert!
Further information:
http://www.dkfz.de
http://www.dkfz.de/de/presse/pressemitteilungen/2009/images/HPV_1.jpg

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>