Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Paper wasps and honey bees share a genetic toolkit

They are both nest-building social insects, but paper wasps and honey bees organize their colonies in very different ways. In a new study, researchers report that despite their differences, these insects rely on the same network of genes to guide their social behavior.

The study appears in the Proceedings of the Royal Society B: Biological Sciences.

Honey bees and paper wasps are separated by more than 100 million years of evolution, and there are striking differences in how they divvy up the work of maintaining a colony, said University of Illinois entomology professor Gene Robinson, who led the study with postdoctoral researcher Amy Toth.

“Honey bees have a sharp division of labor between queens, which reproduce, and workers, which care for the brood and forage for food, while among paper wasps social roles are much more fluid,” he said. “And yet the same genes can be used by these different organisms to do similar kinds of things. This is the genetic toolkit idea: The same genetic elements are used for different types of division of labor.”

A genetic toolkit already has been found for physical traits, such as the development of eyes, said Robinson, who is also a professor in the Institute for Genomic Biology. For example, the same gene, called PAX-6, is involved in eye development in mammals and insects, even though it is virtually certain that these structures did not evolve from a similar structure in a common ancestor.

For the new study, the researchers compared the activation of genes in the brains of four groups of female paper wasps (Polistes metricus) that have different roles in the nest, with some more active in reproduction and others more active in provisioning the brood.

The purpose of the study was to determine if differences in brain gene activity between the wasps rely on the same networks of genes that in the honey bee (Apis mellifera) drive their division of labor.

A previous study of paper wasps by Robinson, Toth and their colleagues obtained a partial sequence of the wasp genome and looked at the expression of 32 genes. That analysis, published in Science in 2007, showed that – as in honey bees – most of the targeted genes are activated differently in different groups of paper wasps. But those genes were hand-picked because they were important to honey bees, Robinson said. For this reason, the team wanted to take a second look at the broad array of genes in the wasp – to be sure that the pattern they had identified was indeed special to wasps as well as bees.

Crop sciences professor Matt Hudson, the team’s bioinformatics expert, used a computer algorithm to mine the sequencing data from the previous study to design a microarray. The microarray allowed the researchers to simultaneously measure those genes that were most active in the paper wasp brain.

“We expect that Polistes has got somewhere in the range of 10,000 genes, and we expect that at least half of them, but not all of them, would be expressed in the brain,” said Hudson, who also is a professor in the Institute for Genomic Biology. The effort identified more than 4,900 genes that were active in the wasp brain.

The new analysis confirmed that the same genes and gene regulators that are important to the division of labor within a honey bee hive also are used by the wasps as they take on different roles in the nest.

The team included researchers from the department of animal biology at Illinois, as well as from Grand Valley State University. Amy Toth now is a professor at Iowa State University.

This study was supported by the National Science Foundation and the Illinois Sociogenomics Initiative.

Diana Yates | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.
24.10.2016 | Max-Planck-Institut für Hirnforschung

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>