Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paper wasps and honey bees share a genetic toolkit

28.04.2010
They are both nest-building social insects, but paper wasps and honey bees organize their colonies in very different ways. In a new study, researchers report that despite their differences, these insects rely on the same network of genes to guide their social behavior.

The study appears in the Proceedings of the Royal Society B: Biological Sciences.

Honey bees and paper wasps are separated by more than 100 million years of evolution, and there are striking differences in how they divvy up the work of maintaining a colony, said University of Illinois entomology professor Gene Robinson, who led the study with postdoctoral researcher Amy Toth.

“Honey bees have a sharp division of labor between queens, which reproduce, and workers, which care for the brood and forage for food, while among paper wasps social roles are much more fluid,” he said. “And yet the same genes can be used by these different organisms to do similar kinds of things. This is the genetic toolkit idea: The same genetic elements are used for different types of division of labor.”

A genetic toolkit already has been found for physical traits, such as the development of eyes, said Robinson, who is also a professor in the Institute for Genomic Biology. For example, the same gene, called PAX-6, is involved in eye development in mammals and insects, even though it is virtually certain that these structures did not evolve from a similar structure in a common ancestor.

For the new study, the researchers compared the activation of genes in the brains of four groups of female paper wasps (Polistes metricus) that have different roles in the nest, with some more active in reproduction and others more active in provisioning the brood.

The purpose of the study was to determine if differences in brain gene activity between the wasps rely on the same networks of genes that in the honey bee (Apis mellifera) drive their division of labor.

A previous study of paper wasps by Robinson, Toth and their colleagues obtained a partial sequence of the wasp genome and looked at the expression of 32 genes. That analysis, published in Science in 2007, showed that – as in honey bees – most of the targeted genes are activated differently in different groups of paper wasps. But those genes were hand-picked because they were important to honey bees, Robinson said. For this reason, the team wanted to take a second look at the broad array of genes in the wasp – to be sure that the pattern they had identified was indeed special to wasps as well as bees.

Crop sciences professor Matt Hudson, the team’s bioinformatics expert, used a computer algorithm to mine the sequencing data from the previous study to design a microarray. The microarray allowed the researchers to simultaneously measure those genes that were most active in the paper wasp brain.

“We expect that Polistes has got somewhere in the range of 10,000 genes, and we expect that at least half of them, but not all of them, would be expressed in the brain,” said Hudson, who also is a professor in the Institute for Genomic Biology. The effort identified more than 4,900 genes that were active in the wasp brain.

The new analysis confirmed that the same genes and gene regulators that are important to the division of labor within a honey bee hive also are used by the wasps as they take on different roles in the nest.

The team included researchers from the department of animal biology at Illinois, as well as from Grand Valley State University. Amy Toth now is a professor at Iowa State University.

This study was supported by the National Science Foundation and the Illinois Sociogenomics Initiative.

Diana Yates | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>