Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paper wasps and honey bees share a genetic toolkit

28.04.2010
They are both nest-building social insects, but paper wasps and honey bees organize their colonies in very different ways. In a new study, researchers report that despite their differences, these insects rely on the same network of genes to guide their social behavior.

The study appears in the Proceedings of the Royal Society B: Biological Sciences.

Honey bees and paper wasps are separated by more than 100 million years of evolution, and there are striking differences in how they divvy up the work of maintaining a colony, said University of Illinois entomology professor Gene Robinson, who led the study with postdoctoral researcher Amy Toth.

“Honey bees have a sharp division of labor between queens, which reproduce, and workers, which care for the brood and forage for food, while among paper wasps social roles are much more fluid,” he said. “And yet the same genes can be used by these different organisms to do similar kinds of things. This is the genetic toolkit idea: The same genetic elements are used for different types of division of labor.”

A genetic toolkit already has been found for physical traits, such as the development of eyes, said Robinson, who is also a professor in the Institute for Genomic Biology. For example, the same gene, called PAX-6, is involved in eye development in mammals and insects, even though it is virtually certain that these structures did not evolve from a similar structure in a common ancestor.

For the new study, the researchers compared the activation of genes in the brains of four groups of female paper wasps (Polistes metricus) that have different roles in the nest, with some more active in reproduction and others more active in provisioning the brood.

The purpose of the study was to determine if differences in brain gene activity between the wasps rely on the same networks of genes that in the honey bee (Apis mellifera) drive their division of labor.

A previous study of paper wasps by Robinson, Toth and their colleagues obtained a partial sequence of the wasp genome and looked at the expression of 32 genes. That analysis, published in Science in 2007, showed that – as in honey bees – most of the targeted genes are activated differently in different groups of paper wasps. But those genes were hand-picked because they were important to honey bees, Robinson said. For this reason, the team wanted to take a second look at the broad array of genes in the wasp – to be sure that the pattern they had identified was indeed special to wasps as well as bees.

Crop sciences professor Matt Hudson, the team’s bioinformatics expert, used a computer algorithm to mine the sequencing data from the previous study to design a microarray. The microarray allowed the researchers to simultaneously measure those genes that were most active in the paper wasp brain.

“We expect that Polistes has got somewhere in the range of 10,000 genes, and we expect that at least half of them, but not all of them, would be expressed in the brain,” said Hudson, who also is a professor in the Institute for Genomic Biology. The effort identified more than 4,900 genes that were active in the wasp brain.

The new analysis confirmed that the same genes and gene regulators that are important to the division of labor within a honey bee hive also are used by the wasps as they take on different roles in the nest.

The team included researchers from the department of animal biology at Illinois, as well as from Grand Valley State University. Amy Toth now is a professor at Iowa State University.

This study was supported by the National Science Foundation and the Illinois Sociogenomics Initiative.

Diana Yates | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>