Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paper Uncovers Power of Foldit Gamers’ Strategies

09.11.2011
Researchers studying the nature of crowds playing Foldit called some strategies “shocking” in how well they mimicked some of the methods already used by protein scientists.

Gamers made headlines in September for unraveling the structure of a protein central to research on AIDS. Today, in a paper published online at the Proceedings of the National Academy of Sciences, University of Washington researchers reveal the creative power of Foldit players’ strategies and compare them to the best-known scientist-developed methods.

“We enabled players to create and improve each other’s best recipes to play the game. Once we looked at the variety and creativity of these recipes, we were shocked to find state-of-the-art algorithms.” said Zoran Popovic, principal investigator of the Foldit Project and the Director of the Center for Game Science. Foldit is developed by the Center in collaboration with the biochemistry laboratory of David Baker.

“To us, this paper is even more exciting than the one in September,” said Firas Khatib, a co-author on both papers and a researcher in the Baker lab. Baker, also principal investigator on the project, has been exploring ways to further protein structure research using distributed computing for many years with the Rosetta@home project.

By studying the most effective formal recipes or algorithms that players used to solve protein structure puzzles, the group hopes to formalize complex strategies and apply them widely to scientific problems, Khatib explained. (An algorithm is a list of instructions for a computer program.) In the game, these lists are called recipes.

“With our previous papers, we proved that a scientific-discovery game can solve long-standing scientific problems, but this paper shows how gamers codified their strategies, shared them and improved them. This is just the beginning of what Foldit players are capable of solving,” explained Seth Cooper, the primary architect and co-creator of Foldit and the creative director of the Center for Game Science, Researchers put 721 gamers under a magnifying glass during a three-month period, and studied their play in detail. These players used tools for creating, editing, sharing and rating game-playing recipes within the Foldit game. One of these, dubbed Blue Fuse, was the most popular recipe used in the game.

In the game, puzzlers must build proteins that show certain characteristics – including using the least energy. This is called “energy optimization.” Blue Fuse scored well in designing proteins for this requirement. In a surprising turn, Blue Fuse also bore a striking resemblance to a scientist-built yet-unpublished algorithm from the Baker lab that they named “Fast Relax.”

People playing the game, including the author of Blue Fuse who plays under the Foldit username Vertex, were surprisingly willing to share their recipes. Sharing, which may seem odd for competitive people, proved quite common among Foldit players. “I shared BF fully because Foldit is so much more than a game – the competition is serious and fierce, but we are also trying to improve the understanding of huge biological proteins. We collaborate and compete at the same time,” Vertex wrote. He pointed out that he built Blue Fuse partly borrowing from the elegance of another recipe by a different gamer, “Acid Tweeker.”

"Blue Fuse spawned from Acid Tweeker…and now has many children of its own. To 'Fuze' has even become a Foldit verb. And the next flash of inspiration can come from literally anyone," he wrote via email.

While researchers hope to find ways to almost automate human intuition, Khatib pointed out that this study demonstrates the remarkably flexible nature of the gamer intelligence.

“Foldit players employ recipes only to do certain tasks at different stages of their puzzling,” he said. Used at the wrong time, even Blue Fuse would not give you an advantage. “The art of discovery still rests with creative game play and how and where to use the codified strategies,” explains Popovic.

The team has loaded the newest version of Foldit to allow players more creativity and more scripting tools. They wait to see what Foldit-player ingenuity and social gaming will discover next.

The project was developed by the UW Center for Game Science in collaboration with the Baker laboratory, with funding from the U.S. Defense Advanced Research Projects Agency (DARPA), the U.S. National Science Foundation, the Howard Hughes Medical Institute, Adobe and Microsoft Corp.

Other co-authors are the Foldit players themselves, Michael Tyka, postdoctoral researcher in the Baker lab, and Kefan Xu and Ilya Makedon, both software engineers at the Center for Game Science.

Foldit videos are on YouTube at http://www.youtube.com/user/uwFoldit

Other links:
Center for Game Science
http://games.cs.washington.edu/drupal6/index.php?q=node/9
Play Foldit
http://fold.it/portal/
Features about the project from UW archives:
http://www.washington.edu/news/articles/gamers-succeed-where-scientists-fail
http://www.washington.edu/news/archive/id/59530
For more information, these authors can be contacted via emails: David Baker at dabaker@u.washington.edu; Zoran Popovic at zoran@cs.washington.edu; Seth Cooper at scooper@cs.washington.edu; Firas Khatib at firas@uw.edu

Sally James | Newswise Science News
Further information:
http://www.uw.edu

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>