Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paper Uncovers Power of Foldit Gamers’ Strategies

09.11.2011
Researchers studying the nature of crowds playing Foldit called some strategies “shocking” in how well they mimicked some of the methods already used by protein scientists.

Gamers made headlines in September for unraveling the structure of a protein central to research on AIDS. Today, in a paper published online at the Proceedings of the National Academy of Sciences, University of Washington researchers reveal the creative power of Foldit players’ strategies and compare them to the best-known scientist-developed methods.

“We enabled players to create and improve each other’s best recipes to play the game. Once we looked at the variety and creativity of these recipes, we were shocked to find state-of-the-art algorithms.” said Zoran Popovic, principal investigator of the Foldit Project and the Director of the Center for Game Science. Foldit is developed by the Center in collaboration with the biochemistry laboratory of David Baker.

“To us, this paper is even more exciting than the one in September,” said Firas Khatib, a co-author on both papers and a researcher in the Baker lab. Baker, also principal investigator on the project, has been exploring ways to further protein structure research using distributed computing for many years with the Rosetta@home project.

By studying the most effective formal recipes or algorithms that players used to solve protein structure puzzles, the group hopes to formalize complex strategies and apply them widely to scientific problems, Khatib explained. (An algorithm is a list of instructions for a computer program.) In the game, these lists are called recipes.

“With our previous papers, we proved that a scientific-discovery game can solve long-standing scientific problems, but this paper shows how gamers codified their strategies, shared them and improved them. This is just the beginning of what Foldit players are capable of solving,” explained Seth Cooper, the primary architect and co-creator of Foldit and the creative director of the Center for Game Science, Researchers put 721 gamers under a magnifying glass during a three-month period, and studied their play in detail. These players used tools for creating, editing, sharing and rating game-playing recipes within the Foldit game. One of these, dubbed Blue Fuse, was the most popular recipe used in the game.

In the game, puzzlers must build proteins that show certain characteristics – including using the least energy. This is called “energy optimization.” Blue Fuse scored well in designing proteins for this requirement. In a surprising turn, Blue Fuse also bore a striking resemblance to a scientist-built yet-unpublished algorithm from the Baker lab that they named “Fast Relax.”

People playing the game, including the author of Blue Fuse who plays under the Foldit username Vertex, were surprisingly willing to share their recipes. Sharing, which may seem odd for competitive people, proved quite common among Foldit players. “I shared BF fully because Foldit is so much more than a game – the competition is serious and fierce, but we are also trying to improve the understanding of huge biological proteins. We collaborate and compete at the same time,” Vertex wrote. He pointed out that he built Blue Fuse partly borrowing from the elegance of another recipe by a different gamer, “Acid Tweeker.”

"Blue Fuse spawned from Acid Tweeker…and now has many children of its own. To 'Fuze' has even become a Foldit verb. And the next flash of inspiration can come from literally anyone," he wrote via email.

While researchers hope to find ways to almost automate human intuition, Khatib pointed out that this study demonstrates the remarkably flexible nature of the gamer intelligence.

“Foldit players employ recipes only to do certain tasks at different stages of their puzzling,” he said. Used at the wrong time, even Blue Fuse would not give you an advantage. “The art of discovery still rests with creative game play and how and where to use the codified strategies,” explains Popovic.

The team has loaded the newest version of Foldit to allow players more creativity and more scripting tools. They wait to see what Foldit-player ingenuity and social gaming will discover next.

The project was developed by the UW Center for Game Science in collaboration with the Baker laboratory, with funding from the U.S. Defense Advanced Research Projects Agency (DARPA), the U.S. National Science Foundation, the Howard Hughes Medical Institute, Adobe and Microsoft Corp.

Other co-authors are the Foldit players themselves, Michael Tyka, postdoctoral researcher in the Baker lab, and Kefan Xu and Ilya Makedon, both software engineers at the Center for Game Science.

Foldit videos are on YouTube at http://www.youtube.com/user/uwFoldit

Other links:
Center for Game Science
http://games.cs.washington.edu/drupal6/index.php?q=node/9
Play Foldit
http://fold.it/portal/
Features about the project from UW archives:
http://www.washington.edu/news/articles/gamers-succeed-where-scientists-fail
http://www.washington.edu/news/archive/id/59530
For more information, these authors can be contacted via emails: David Baker at dabaker@u.washington.edu; Zoran Popovic at zoran@cs.washington.edu; Seth Cooper at scooper@cs.washington.edu; Firas Khatib at firas@uw.edu

Sally James | Newswise Science News
Further information:
http://www.uw.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

New research could literally squeeze more power out of solar cells

20.04.2018 | Physics and Astronomy

New record on squeezing light to one atom: Atomic Lego guides light below one nanometer

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>