Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Paper Uncovers Power of Foldit Gamers’ Strategies

Researchers studying the nature of crowds playing Foldit called some strategies “shocking” in how well they mimicked some of the methods already used by protein scientists.

Gamers made headlines in September for unraveling the structure of a protein central to research on AIDS. Today, in a paper published online at the Proceedings of the National Academy of Sciences, University of Washington researchers reveal the creative power of Foldit players’ strategies and compare them to the best-known scientist-developed methods.

“We enabled players to create and improve each other’s best recipes to play the game. Once we looked at the variety and creativity of these recipes, we were shocked to find state-of-the-art algorithms.” said Zoran Popovic, principal investigator of the Foldit Project and the Director of the Center for Game Science. Foldit is developed by the Center in collaboration with the biochemistry laboratory of David Baker.

“To us, this paper is even more exciting than the one in September,” said Firas Khatib, a co-author on both papers and a researcher in the Baker lab. Baker, also principal investigator on the project, has been exploring ways to further protein structure research using distributed computing for many years with the Rosetta@home project.

By studying the most effective formal recipes or algorithms that players used to solve protein structure puzzles, the group hopes to formalize complex strategies and apply them widely to scientific problems, Khatib explained. (An algorithm is a list of instructions for a computer program.) In the game, these lists are called recipes.

“With our previous papers, we proved that a scientific-discovery game can solve long-standing scientific problems, but this paper shows how gamers codified their strategies, shared them and improved them. This is just the beginning of what Foldit players are capable of solving,” explained Seth Cooper, the primary architect and co-creator of Foldit and the creative director of the Center for Game Science, Researchers put 721 gamers under a magnifying glass during a three-month period, and studied their play in detail. These players used tools for creating, editing, sharing and rating game-playing recipes within the Foldit game. One of these, dubbed Blue Fuse, was the most popular recipe used in the game.

In the game, puzzlers must build proteins that show certain characteristics – including using the least energy. This is called “energy optimization.” Blue Fuse scored well in designing proteins for this requirement. In a surprising turn, Blue Fuse also bore a striking resemblance to a scientist-built yet-unpublished algorithm from the Baker lab that they named “Fast Relax.”

People playing the game, including the author of Blue Fuse who plays under the Foldit username Vertex, were surprisingly willing to share their recipes. Sharing, which may seem odd for competitive people, proved quite common among Foldit players. “I shared BF fully because Foldit is so much more than a game – the competition is serious and fierce, but we are also trying to improve the understanding of huge biological proteins. We collaborate and compete at the same time,” Vertex wrote. He pointed out that he built Blue Fuse partly borrowing from the elegance of another recipe by a different gamer, “Acid Tweeker.”

"Blue Fuse spawned from Acid Tweeker…and now has many children of its own. To 'Fuze' has even become a Foldit verb. And the next flash of inspiration can come from literally anyone," he wrote via email.

While researchers hope to find ways to almost automate human intuition, Khatib pointed out that this study demonstrates the remarkably flexible nature of the gamer intelligence.

“Foldit players employ recipes only to do certain tasks at different stages of their puzzling,” he said. Used at the wrong time, even Blue Fuse would not give you an advantage. “The art of discovery still rests with creative game play and how and where to use the codified strategies,” explains Popovic.

The team has loaded the newest version of Foldit to allow players more creativity and more scripting tools. They wait to see what Foldit-player ingenuity and social gaming will discover next.

The project was developed by the UW Center for Game Science in collaboration with the Baker laboratory, with funding from the U.S. Defense Advanced Research Projects Agency (DARPA), the U.S. National Science Foundation, the Howard Hughes Medical Institute, Adobe and Microsoft Corp.

Other co-authors are the Foldit players themselves, Michael Tyka, postdoctoral researcher in the Baker lab, and Kefan Xu and Ilya Makedon, both software engineers at the Center for Game Science.

Foldit videos are on YouTube at

Other links:
Center for Game Science
Play Foldit
Features about the project from UW archives:
For more information, these authors can be contacted via emails: David Baker at; Zoran Popovic at; Seth Cooper at; Firas Khatib at

Sally James | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>