Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paper strips can quickly detect toxin in drinking water

11.01.2010
A strip of paper infused with carbon nanotubes can quickly and inexpensively detect a toxin produced by algae in drinking water.

Engineers at the University of Michigan led the development of the new biosensor.

The paper strips perform 28 times faster than the complicated method most commonly used today to detect microcystin-LR, a chemical compound produced by cyanobacteria, or blue-green algae. Cyanobacteria is commonly found on nutrient-rich waters.

Microcystin-LR (MC-LR), even in very small quantities, is suspected to cause liver damage and possibly liver cancer. The substance and others like it are among the leading causes of biological water pollution. It is believed to be a culprit of mass poisonings going back to early human history, said Nicholas Kotov, a professor in the departments of Chemical Engineering, Biomedical Engineering and Materials Science and Engineering who led the project.

Water treatment plants—even in developed countries—can't always remove MC-LR completely, nor can they test for it often enough, Kotov said. The biosensor he and his colleagues developed provides a quick, cheap, portable and sensitive test that could allow water treatment plants and individuals to verify the safety of water on a more regular basis.

"The safety of drinking water is a vital issue in many developing countries and in many parts of the United States," Kotov said. "We've developed a simple and inexpensive technology to detect multiple toxins."

The technology could easily be adapted to detect a variety harmful chemicals or toxins in water or food.

A paper about the technique is published online in Nano Letters. It will soon be available in the journal's print edition.

The sensor works by measuring the electrical conductivity of the nanotubes in the paper. Before the nanotubes are impregnated in the paper, they are mixed with antibodies for MC-LR. When the paper strips come in contact with water contaminated with MC-LR, those antibodies squeeze in between the nanotubes to bond with the MC-LR. This spreading apart of the nanotubes changes their electrical conductivity.

An external monitor measures the electrical conductivity. The whole device is about the size of a home pregnancy test, Kotov said. Results appear in fewer than 12 minutes.

To adapt the biosensor for other toxins, Kotov said, scientists could simply replace the antibodies that bond to the toxin.

The paper is called "Simple, Rapid, Sensitive and Versatile SWNT-Paper Sensor for Environmental Toxin Detection Competitive with ELISA." It is available online at http://pubs.acs.org/doi/abs/10.1021/nl902368r.

This research was done in collaboration with the laboratory of professor Chuanlai Xu at Wuxi University in China. It is funded by the National Science Foundation, the Air Force Office of Scientific Research, and the National Institutes of Health, as well as the National Science Foundation of China and the 11th Five Years Key Programs for Science and Technology Development of China.

The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.engin.umich.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>