Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paper strips can quickly detect toxin in drinking water

11.01.2010
A strip of paper infused with carbon nanotubes can quickly and inexpensively detect a toxin produced by algae in drinking water.

Engineers at the University of Michigan led the development of the new biosensor.

The paper strips perform 28 times faster than the complicated method most commonly used today to detect microcystin-LR, a chemical compound produced by cyanobacteria, or blue-green algae. Cyanobacteria is commonly found on nutrient-rich waters.

Microcystin-LR (MC-LR), even in very small quantities, is suspected to cause liver damage and possibly liver cancer. The substance and others like it are among the leading causes of biological water pollution. It is believed to be a culprit of mass poisonings going back to early human history, said Nicholas Kotov, a professor in the departments of Chemical Engineering, Biomedical Engineering and Materials Science and Engineering who led the project.

Water treatment plants—even in developed countries—can't always remove MC-LR completely, nor can they test for it often enough, Kotov said. The biosensor he and his colleagues developed provides a quick, cheap, portable and sensitive test that could allow water treatment plants and individuals to verify the safety of water on a more regular basis.

"The safety of drinking water is a vital issue in many developing countries and in many parts of the United States," Kotov said. "We've developed a simple and inexpensive technology to detect multiple toxins."

The technology could easily be adapted to detect a variety harmful chemicals or toxins in water or food.

A paper about the technique is published online in Nano Letters. It will soon be available in the journal's print edition.

The sensor works by measuring the electrical conductivity of the nanotubes in the paper. Before the nanotubes are impregnated in the paper, they are mixed with antibodies for MC-LR. When the paper strips come in contact with water contaminated with MC-LR, those antibodies squeeze in between the nanotubes to bond with the MC-LR. This spreading apart of the nanotubes changes their electrical conductivity.

An external monitor measures the electrical conductivity. The whole device is about the size of a home pregnancy test, Kotov said. Results appear in fewer than 12 minutes.

To adapt the biosensor for other toxins, Kotov said, scientists could simply replace the antibodies that bond to the toxin.

The paper is called "Simple, Rapid, Sensitive and Versatile SWNT-Paper Sensor for Environmental Toxin Detection Competitive with ELISA." It is available online at http://pubs.acs.org/doi/abs/10.1021/nl902368r.

This research was done in collaboration with the laboratory of professor Chuanlai Xu at Wuxi University in China. It is funded by the National Science Foundation, the Air Force Office of Scientific Research, and the National Institutes of Health, as well as the National Science Foundation of China and the 11th Five Years Key Programs for Science and Technology Development of China.

The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.engin.umich.edu

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>