Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Paper strips can quickly detect toxin in drinking water

A strip of paper infused with carbon nanotubes can quickly and inexpensively detect a toxin produced by algae in drinking water.

Engineers at the University of Michigan led the development of the new biosensor.

The paper strips perform 28 times faster than the complicated method most commonly used today to detect microcystin-LR, a chemical compound produced by cyanobacteria, or blue-green algae. Cyanobacteria is commonly found on nutrient-rich waters.

Microcystin-LR (MC-LR), even in very small quantities, is suspected to cause liver damage and possibly liver cancer. The substance and others like it are among the leading causes of biological water pollution. It is believed to be a culprit of mass poisonings going back to early human history, said Nicholas Kotov, a professor in the departments of Chemical Engineering, Biomedical Engineering and Materials Science and Engineering who led the project.

Water treatment plants—even in developed countries—can't always remove MC-LR completely, nor can they test for it often enough, Kotov said. The biosensor he and his colleagues developed provides a quick, cheap, portable and sensitive test that could allow water treatment plants and individuals to verify the safety of water on a more regular basis.

"The safety of drinking water is a vital issue in many developing countries and in many parts of the United States," Kotov said. "We've developed a simple and inexpensive technology to detect multiple toxins."

The technology could easily be adapted to detect a variety harmful chemicals or toxins in water or food.

A paper about the technique is published online in Nano Letters. It will soon be available in the journal's print edition.

The sensor works by measuring the electrical conductivity of the nanotubes in the paper. Before the nanotubes are impregnated in the paper, they are mixed with antibodies for MC-LR. When the paper strips come in contact with water contaminated with MC-LR, those antibodies squeeze in between the nanotubes to bond with the MC-LR. This spreading apart of the nanotubes changes their electrical conductivity.

An external monitor measures the electrical conductivity. The whole device is about the size of a home pregnancy test, Kotov said. Results appear in fewer than 12 minutes.

To adapt the biosensor for other toxins, Kotov said, scientists could simply replace the antibodies that bond to the toxin.

The paper is called "Simple, Rapid, Sensitive and Versatile SWNT-Paper Sensor for Environmental Toxin Detection Competitive with ELISA." It is available online at

This research was done in collaboration with the laboratory of professor Chuanlai Xu at Wuxi University in China. It is funded by the National Science Foundation, the Air Force Office of Scientific Research, and the National Institutes of Health, as well as the National Science Foundation of China and the 11th Five Years Key Programs for Science and Technology Development of China.

The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility.

Nicole Casal Moore | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>