Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paper offers new insights into the genomics of speciation

11.05.2010
A new paper by a team of researchers led by University of Notre Dame biologist Jeffrey Feder could herald an important shift in thinking about the genomics of speciation.

Titled "Widespread genomic divergence during sympatric speciation," the paper appears in today's edition of the Proceedings of the National Academy of Sciences.

The prevailing assumption among scientists about how the genomes of newly forming species should differ during the earliest stages of divergence with gene flow speciation is that it will be characterized by a few regions of strong differentiation, amidst a remainder of the genome that remains unaffected by natural selection and thus relatively undifferentiated. This analogy of "genomic islands of speciation" has come to dominate the evolutionary genetics community.

"The island concept has crystallized around an attractive hypothesis termed 'divergence hitchhiking,' in which selection on one or a few genomic regions drives speciation," Feder said.

In the new paper, Feder and his colleagues report experimental and genomic evidence that contrary to the prevailing assumption, speciation in the classic apple maggot fly system Rhagoletis pomonella involves genome-wide differentiation driven by natural selection.

"Our result in Rhagoletis conflicts with the current thinking about how the genomes of newly forming species could differ during the earliest stages of divergence-with-gene-flow speciation," Feder said. "Rather than finding just isolated 'genomic islands' of genetic divergence, we instead discovered 'continents' of divergence encompassing large swaths of the genome."

He points out that past work on the genomics of speciation lacked experimental data and thus may have been unable to detect genomic regions under weaker natural selection, establishing a view of speciation involving genetic divergence in just a few, isolated genomic islands.

Rhagoeitis pomonella fruit flies originally attacked the fruit of hawthorn trees. But about 150 years ago, a portion of the hawthorn fly population shifted and began to feed on apples. In ecologically adapting to apples as a new host plant, apple flies are becoming genetically distinct and reproductively isolated from hawthorn flies. Apple and hawthorn flies are therefore considered to represent "host races" in the early stages of actively diverging into species. As such, the apple and hawthorn races of Rhagoeitis pomonella provided Feder and his fellow researchers a unique opportunity to conduct a direct experimental test of the island versus continents hypotheses.

"This type of comprehensive data, particularly the experimental results, are missing from the bevy of genome scan studies performed in the last few years lending support to the island hypothesis," Feder said. "Without experimental data on responses to selection, these genome scan studies alone can be biased toward identifying isolated outer loci, supporting the island hypothesis.

"We foresee that as mass genotyping techniques continue to advance, it will be these types of inquires and questions that come to dominate the emerging field of population genomics and speciation. We hope our study offers a glimpse of what the future may look like."

The research was funded by the National Science Foundation and the United States Department of Agriculture.

Jeffrey L. Feder | EurekAlert!
Further information:
http://www.nd.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>