Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paper offers new insights into the genomics of speciation

11.05.2010
A new paper by a team of researchers led by University of Notre Dame biologist Jeffrey Feder could herald an important shift in thinking about the genomics of speciation.

Titled "Widespread genomic divergence during sympatric speciation," the paper appears in today's edition of the Proceedings of the National Academy of Sciences.

The prevailing assumption among scientists about how the genomes of newly forming species should differ during the earliest stages of divergence with gene flow speciation is that it will be characterized by a few regions of strong differentiation, amidst a remainder of the genome that remains unaffected by natural selection and thus relatively undifferentiated. This analogy of "genomic islands of speciation" has come to dominate the evolutionary genetics community.

"The island concept has crystallized around an attractive hypothesis termed 'divergence hitchhiking,' in which selection on one or a few genomic regions drives speciation," Feder said.

In the new paper, Feder and his colleagues report experimental and genomic evidence that contrary to the prevailing assumption, speciation in the classic apple maggot fly system Rhagoletis pomonella involves genome-wide differentiation driven by natural selection.

"Our result in Rhagoletis conflicts with the current thinking about how the genomes of newly forming species could differ during the earliest stages of divergence-with-gene-flow speciation," Feder said. "Rather than finding just isolated 'genomic islands' of genetic divergence, we instead discovered 'continents' of divergence encompassing large swaths of the genome."

He points out that past work on the genomics of speciation lacked experimental data and thus may have been unable to detect genomic regions under weaker natural selection, establishing a view of speciation involving genetic divergence in just a few, isolated genomic islands.

Rhagoeitis pomonella fruit flies originally attacked the fruit of hawthorn trees. But about 150 years ago, a portion of the hawthorn fly population shifted and began to feed on apples. In ecologically adapting to apples as a new host plant, apple flies are becoming genetically distinct and reproductively isolated from hawthorn flies. Apple and hawthorn flies are therefore considered to represent "host races" in the early stages of actively diverging into species. As such, the apple and hawthorn races of Rhagoeitis pomonella provided Feder and his fellow researchers a unique opportunity to conduct a direct experimental test of the island versus continents hypotheses.

"This type of comprehensive data, particularly the experimental results, are missing from the bevy of genome scan studies performed in the last few years lending support to the island hypothesis," Feder said. "Without experimental data on responses to selection, these genome scan studies alone can be biased toward identifying isolated outer loci, supporting the island hypothesis.

"We foresee that as mass genotyping techniques continue to advance, it will be these types of inquires and questions that come to dominate the emerging field of population genomics and speciation. We hope our study offers a glimpse of what the future may look like."

The research was funded by the National Science Foundation and the United States Department of Agriculture.

Jeffrey L. Feder | EurekAlert!
Further information:
http://www.nd.edu

More articles from Life Sciences:

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Global threat to primates concerns us all

19.01.2017 | Ecology, The Environment and Conservation

Scientist from Kiel University coordinates Million Euros Project in Inflammation Research

19.01.2017 | Awards Funding

The Great Unknown: Risk-Taking Behavior in Adolescents

19.01.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>