Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Panda Restoration Efforts Look at Digestive Systems

21.05.2014

Digestive processes impact panda survival

Mississippi State University researchers were part of the team that learned that giant and red pandas have different digestive microbes, a finding with important implications for conservation efforts and captive animal rearing.


File photo by MSU Ag Communications/Kat Lawrence

Gastrointestinal diseases are major causes of death among wild and captive pandas. Mississippi State University researchers are working with the Memphis Zoo to learn about the digestive processes of pandas, such as this giant panda housed at the zoo.

Gastrointestinal diseases are the major cause of mortality in wild and captive pandas, but little is known about their digestive process. The giant panda is an endangered species, while the red panda is considered a vulnerable species, according to the International Union for Conservation of Nature. Both eat mostly fibrous bamboo.

Candace Williams, an MSU doctoral student in biochemistry, conducted the research in collaboration with the University of Wisconsin-Madison, the Memphis Zoo and the National Zoo in Washington, D.C. Williams presented her findings at the American Society for Microbiology in Boston in May.

Her study was funded through the university’s Mississippi Agricultural and Forestry Experiment Station and the Memphis Zoological Society.

“Although they are different species, the giant panda and red panda share several characteristics,” Williams said.

Under the direction of biochemist Ashli Brown Johnson, MSU scientists set out to determine if there were similarities in the microbes that digest this plant-based diet.

To investigate the microbes, Williams collected fecal samples from two giant pandas and one red panda at the Memphis Zoo. The team also obtained samples from a red panda at the National Zoo. Williams used advanced genetic sequencing techniques to determine what gastrointestinal bacteria were present.

“The procedure revealed all microbes in the fecal matter, including some that were not known,” Johnson said. “Study of these microbes may have unrealized potential for agriculture, biomass digestion for bioenergy crops or other discovery research applications.”

Fecal samples from both species were dominated by plant material, which impeded identification of the microbes. A student at the University of Wisconsin-Madison developed a method to remove this plant material, allowing the digestive microbes to be clearly identified.

“Our results revealed significant differences between the microbes found in the two panda species,” Johnson said. “While they have some similar microbes in their digestive tracts, each panda species has a different dominant microbe present.”

Understanding the gastrointestinal bacteria in pandas will help guide reforestation efforts throughout China’s mountainous region. The Chinese government has established 50 panda reserves within the animals’ home range. Additionally, China has banned logging to preserve the habitat of the declining species.

“With gastrointestinal disease causing the greatest natural mortality of red and giant pandas, a greater understanding of the digestive microbes will assist in maintaining captive panda populations housed at zoos,” Williams said.

Mississippi State scientists have worked with the Chinese Academy of Science’s Institute of Zoology to monitor and identify the wild panda population. Future research will examine the nutritional composition of bamboo to determine whether the pandas are consuming different varieties of the fibrous plant.

Dr. Ashli Brown Johnson | newswise

Further reports about: Agricultural Chinese Digestive Johnson Memphis Restoration Zoo bacteria giant pandas microbes species

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Chlamydia: How bacteria take over control

28.03.2017 | Life Sciences

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017 | Medical Engineering

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>