Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Panda Restoration Efforts Look at Digestive Systems

21.05.2014

Digestive processes impact panda survival

Mississippi State University researchers were part of the team that learned that giant and red pandas have different digestive microbes, a finding with important implications for conservation efforts and captive animal rearing.


File photo by MSU Ag Communications/Kat Lawrence

Gastrointestinal diseases are major causes of death among wild and captive pandas. Mississippi State University researchers are working with the Memphis Zoo to learn about the digestive processes of pandas, such as this giant panda housed at the zoo.

Gastrointestinal diseases are the major cause of mortality in wild and captive pandas, but little is known about their digestive process. The giant panda is an endangered species, while the red panda is considered a vulnerable species, according to the International Union for Conservation of Nature. Both eat mostly fibrous bamboo.

Candace Williams, an MSU doctoral student in biochemistry, conducted the research in collaboration with the University of Wisconsin-Madison, the Memphis Zoo and the National Zoo in Washington, D.C. Williams presented her findings at the American Society for Microbiology in Boston in May.

Her study was funded through the university’s Mississippi Agricultural and Forestry Experiment Station and the Memphis Zoological Society.

“Although they are different species, the giant panda and red panda share several characteristics,” Williams said.

Under the direction of biochemist Ashli Brown Johnson, MSU scientists set out to determine if there were similarities in the microbes that digest this plant-based diet.

To investigate the microbes, Williams collected fecal samples from two giant pandas and one red panda at the Memphis Zoo. The team also obtained samples from a red panda at the National Zoo. Williams used advanced genetic sequencing techniques to determine what gastrointestinal bacteria were present.

“The procedure revealed all microbes in the fecal matter, including some that were not known,” Johnson said. “Study of these microbes may have unrealized potential for agriculture, biomass digestion for bioenergy crops or other discovery research applications.”

Fecal samples from both species were dominated by plant material, which impeded identification of the microbes. A student at the University of Wisconsin-Madison developed a method to remove this plant material, allowing the digestive microbes to be clearly identified.

“Our results revealed significant differences between the microbes found in the two panda species,” Johnson said. “While they have some similar microbes in their digestive tracts, each panda species has a different dominant microbe present.”

Understanding the gastrointestinal bacteria in pandas will help guide reforestation efforts throughout China’s mountainous region. The Chinese government has established 50 panda reserves within the animals’ home range. Additionally, China has banned logging to preserve the habitat of the declining species.

“With gastrointestinal disease causing the greatest natural mortality of red and giant pandas, a greater understanding of the digestive microbes will assist in maintaining captive panda populations housed at zoos,” Williams said.

Mississippi State scientists have worked with the Chinese Academy of Science’s Institute of Zoology to monitor and identify the wild panda population. Future research will examine the nutritional composition of bamboo to determine whether the pandas are consuming different varieties of the fibrous plant.

Dr. Ashli Brown Johnson | newswise

Further reports about: Agricultural Chinese Digestive Johnson Memphis Restoration Zoo bacteria giant pandas microbes species

More articles from Life Sciences:

nachricht Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools
30.06.2016 | Rice University

nachricht A protein coat helps chromosomes keep their distance
30.06.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Thousands on one chip: New Method to study Proteins

Since the completion of the human genome an important goal has been to elucidate the function of the now known proteins: a new molecular method enables the investigation of the function for thousands of proteins in parallel. Applying this new method, an international team of researchers with leading participation of the Technical University of Munich (TUM) was able to identify hundreds of previously unknown interactions among proteins.

The human genome and those of most common crops have been decoded for many years. Soon it will be possible to sequence your personal genome for less than 1000...

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Quantum technologies to revolutionise 21st century - Nobel Laureates discuss at Lindau

30.06.2016 | Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

 
Latest News

Modeling NAFLD with human pluripotent stem cell derived immature hepatocyte like cells

30.06.2016 | Health and Medicine

Rice University lab runs crowd-sourced competition to create 'big data' diagnostic tools

30.06.2016 | Life Sciences

A drop of water as a model for the interplay of adhesion and stiction

30.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>