Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pancreatic stem cells isolated from mice

17.09.2013
Scientists have succeeded in growing stem cells that have the ability to develop into two different types of cells that make up a healthy pancreas.

The research team led by Dr. Hans Clevers of the Hubrecht Institute, The Netherlands, have isolated and grown stem cells from the pancreases of mice using a 3-D culture system previously developed by the scientists.

The results, which are reported in The EMBO Journal, could eventually lead to ways to repair damaged insulin-producing beta cells or pancreatic duct cells.

Cell signalling molecules known as Wnts and a protein called Lgr5 are essential to produce adult stem cells that can be coaxed to grow and divide rapidly. However, these signaling pathways and molecules are inactive in the adult pancreas. “We have found a way to activate the Wnt pathway to produce an unlimited expansion of pancreatic stem cells isolated from mice,” Clevers said. “By changing the growth conditions we can select two different fates for the stem cells and generate large numbers of either hormone-producing beta cells or pancreatic duct cells.”

He added: “This work is still at a very early stage and further experiments are needed before we can use such an approach for the culture of human cells but the results are a promising proof-of-concept.”

In the study, the pancreases of mice were altered in a way that makes duct cells proliferate and differentiate. Some cells in this new population were stem cells that were capable of self-renewal. The scientists were able to culture these cells to give rise to large numbers of pancreatic cells or tiny clumps of tissue referred to as organoids.

Therapeutic strategies for pancreatic disease have been hampered by a lack of cell culture systems that allow scientists to grow replacement tissue in a test tube or on a dish. Alternative approaches such as tissue transplantation are limited by the scarcity of donors and the possibility of tissue rejection. The new work offers access to an unlimited supply of pancreatic stem cells that would be beneficial for the development of new therapeutic interventions for pancreatic diseases like diabetes.

The next steps for the scientists will include further refinement of the cell culture methods developed in this study and investigation of ways to extend the approach to human pancreatic cells.

Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/Rspondin axis

Meritxell Huch, Paola Bonfanti, Sylvia F. Boj, Toshiro Sato, Cindy J. M. Loomans, Marc van de Wetering, Mozhdeh Sojoodi, Vivian S.W. Li, Jurian Schuijers, Ana Gracanin, Femke Rignalda, Harry Begthel, Johan H. van Es, Eelco de Koning, Robert G.J. Vries, Harry Heimberg and Hans Clevers

The paper is available after 4.00 pm Central European Time on Tuesday September 17 at the following URL:

http://www.nature.com/emboj/journal/vaop/ncurrent/index.html

doi: 10.1038/emboj.2013.204

Further information on The EMBO Journal is available at http://www.nature.com/emboj

Media Contacts
Barry Whyte
Head | Public Relations and Communications
barry.whyte@embo.org
Thomas Schwarz-Romand
Senior Editor, The EMBO Journal
Tel: +49 6221 8891 407
schwarzr@embo.org
About EMBO
EMBO is an organization of more than 1500 leading researchers that promotes excellence in the life sciences. The major goals of the organization are to support talented researchers at all stages of their careers, stimulate the exchange of scientific information, and help build a European research environment where scientists can achieve their best work.

EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Barry Whyte | EMBO Communications
Further information:
http://www.embo.org
http://www.embo.org/news/research-news

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>