Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pairing up: How chromosomes find each other

02.11.2011
After more than a century of study, mysteries still remain about the process of meiosis—a special type of cell division that helps insure genetic diversity in sexually-reproducing organisms. Now, researchers at Stowers Institute for Medical Research shed light on an early and critical step in meiosis.

The research, to be published in the Nov. 8, 2011 issue of Current Biology, clarifies the role of key chromosomal regions called centromeres in the formation of a structure known as the synaptonemal complex (SC). "Understanding this and other mechanisms involved in meiosis is important because of the crucial role meiosis plays in normal reproduction—and the dire consequences of meiosis gone awry," says R. Scott Hawley, Ph.D., who led the research at Stowers.

"Failure of the meiotic division is probably the most common cause of spontaneous abortion and causes a number of birth defects such Down syndrome," Hawley says.

Meiosis reduces the number of chromosomes carried by an individual's regular cells by half, allocating precisely one copy of each chromosome to each egg or sperm cell and thus ensuring that the proper number of chromosomes is passed from parent to offspring. And because chromosomes come in pairs—23 sets in humans—the chromosomes must be properly matched up before they can be divvied up.

"Chromosome 1 from your dad has to be paired with chromosome 1 from your mom, chromosome 2 from your dad with chromosome 2 from your mom, and so on," Hawley explains, "and that's a real trick. There's no room for error; the first step of pairing is the most critical part of the meiotic process. You get that part wrong, and everything else is going to fail."

The task is something like trying to find your mate in a big box store. It helps if you remember what they are wearing and what parts of the store they usually frequent (for example, movies or big-screen TVs). Similarly, chromosomes can pair up more easily if they're able to recognize their partners and find them at a specific place.

"Once they've identified each other at some place, they'll begin the process we call synapsis, which involves building this beautiful structure—the synaptonemal complex—and using it to form an intimate association that runs the entire length of each pair of chromosomes," Hawley explains.

Some model organisms employed in the study of meiosis, such as yeast and the roundworm Caenorhabditis elegans, use the ends of their chromosomes to facilitate the process. "These organisms gather all the chromosome ends against the nuclear envelope into one big cluster called a bouquet or into a bunch of smaller clusters called aggregates, and this brings the chromosome ends into proximity with each other," Hawley says. "This changes the problem of finding your homologue in this great big nucleus into one of finding your mate on just the surface of the inside of the nucleus."

But the fruit fly Drosophila melanogaster—the model organism in which meiosis has been thoroughly studied for more than a century, and which Hawley has studied for almost 40 years – has unusual chromosome ends that don't lend themselves to the same kind of clustering.

"So even though the study of meiosis began in Drosophila, we really haven't had any idea how chromosomes initiate synapsis in Drosophila," Hawley says. "Now, we show that instead of clustering their chromosome ends, flies cluster their centromeres—highly organized structures that chromosomes use to move during cell division. From there, the biology works pretty much as you would expect: synapsis is initiated at the centromeres, and it appears to spread out along the arms of the chromosomes."

The ramifications of the findings extend beyond fruit flies, as there's some evidence that synapsis starts at centromeres in other organisms. In addition, Hawley and coauthors found that centromere clustering may play a role later in meiosis, when chromosomes separate from their partners.

"There's reason to believe that some parts of that process will be at least explorable and potentially applicable to humans," Hawley said.

The work also is notable as an example of discovery-based science, Hawley said. "We didn't actually set out to study the initiation of meiosis; we were simply interested in characterizing the basic biology of early meiosis."

But postdoctoral researcher and first author Satomi Takeo, Ph.D., noticed that centromere clustering and synaptonemal complex initiation occurred in concert, and her continued observations revealed the role of centromeres in initiating synapsis.

"I was staring with tired eyes at the cells that I was analyzing," Takeo recalls. "Somehow I started looking at the spots I had previously ignored—probably because I thought they were just background noise—until I saw the connection between centromere clustering and synapsis initiation. After going through many images, I wrote an email to Scott, saying, 'This is really important, isn't it??' With that finding, everything else started to make sense."

In addition to Hawley and Takeo, the paper's authors include Cathleen M. Lake at the Stowers Institute for Medical Research and Eurico Morais-de-Sá and Cláudio D. Sunkel at Universidade do Porto in Porto, Portugal, who provided information on the earliest stages of the process.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife Virginia opened the Institute in 2000. Since then, the Institute has spent over 800 million dollars in pursuit of its mission.

Currently the Institute is home to nearly 500 researchers and support personnel; over 20 independent research programs; and more than a dozen technology development and core facilities. Learn more about the Institute at www.stowers.org.

Gina Kirchweger | EurekAlert!
Further information:
http://www.stowers.org

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>