Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Painting a 'bullseye' on cancer cells

22.08.2011
Targeting cancer cell metabolism can lead to more effective therapy, Tel Aviv University research finds

Scientists are constantly on the hunt for treatments that can selectively target cancer cells, leaving other cells in our bodies unharmed. Now, Prof. Eytan Ruppin of Tel Aviv University's Blavatnik School of Computer Science and Sackler Faculty of Medicine and his colleagues Prof. Eyal Gottlieb of the Beatson Institute for Cancer Research in Glasgow, UK, and Dr. Tomer Shlomi of the Technion in Haifa have taken a big step forward. They have successfully created the first computerized genome-scale model of cancer cell metabolism, which can be used to predict which drugs are lethal to the function of a cancer cell's metabolism.

By inhibiting their unique metabolic signatures, explains Prof. Ruppin, cancer cells can be killed off in a specific and selective manner. The efficacy of this method has been demonstrated in both computer and laboratory models pertaining to kidney cancer. Because the researchers' new approach is generic, it holds promise for future investigations aimed at effective drug therapies for other types of cancer as well.

The results were recently published in the journal Nature.

Lethal to cancer, safe for other cells

The ability to specifically target cancer cells is the holy grail of cancer research. Currently, many cancer drugs are designed to target any proliferating cells in the body — and while cancer cells certainly proliferate, so do healthy cells, such as hair and gut lining cells, the growth of which are essential to the body's overall health. This explains why many cancer treatments, including chemotherapy, have adverse side effects like nausea and hair loss.

Targeting the metabolism of the cancer cell itself may be one of the most effective ways forward. Cancer cells have a special way of metabolizing nutrients for growth and for energy. This makes cancer cell metabolism essentially different from that of a normal cell.

The researchers' computer model is a reconstruction of the thousands of metabolic reactions that characterize cancer cells. By comparing it to a pre-existing model of a normal human cell's metabolism, they could distinguish the differences between the two. They could then identify drug targets with the potential to affect the specific, special characteristics of cancer metabolism.

To test their predictions, the researchers chose to target cells from a specific type of renal cancer. "In this type of renal cancer, we predicted that using a drug that would specifically inhibit the enzyme HMOX, involved in Heme metabolism, would selectively and efficiently kill cancer cells, leaving normal cells intact," explains Prof. Ruppin. Their computer model led them to hypothesize that the Heme pathway was essential for the cancer cell's metabolism.

In an experimental study led by Prof. Gottlieb's lab, the researchers were able to verify this prediction in both mouse and human cell models, and to study these metabolic alterations in depth.

An all-around treatment model

Metabolism is a large and complex network, built on thousands of reactions. It is beyond the human capability to fully understand, let alone predict how such a complicated system works, says Prof. Ruppin. Now, by allowing researchers to simulate the effects of a disorder, computer models are helping researchers to predict the efficacy of potential drugs and treatments. Though the predictions should always be verified in a lab or clinic, this method is highly cost effective and leads to exciting opportunities for accelerating future drug developments.

While the first model was built to characterize a specific type of cancer, this approach can be applied in the future for creating models for other types of cancer. "This is the next big challenge for us," says Prof. Ruppin. "We are going to continue to build models for other types of cancer, and seek selective drug therapies to defeat them." Their multidisciplinary approach requires both the predictions of a computer model and the findings of experimental clinical trials, and may lead to the faster development of more selective and effective cancer treatments.

American Friends of Tel Aviv University (www.aftau.org) supports Israel's leading, most comprehensive and most sought-after center of higher learning. Independently ranked 94th among the world's top universities for the impact of its research, TAU's innovations and discoveries are cited more often by the global scientific community than all but 10 other universities.

Internationally recognized for the scope and groundbreaking nature of its research and scholarship, Tel Aviv University consistently produces work with profound implications for the future.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>