Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Painted Turtle Gets DNA Decoded

05.04.2013
Scientists have decoded the genome of the western painted turtle, one of the most abundant turtles on Earth, finding clues to their longevity and ability to survive without oxygen during long winters spent hibernating in ice-covered ponds.

Understanding the natural mechanisms turtles use to protect the heart and brain from oxygen deprivation may one day improve treatments for heart attacks or strokes, the researchers say. Both can lead to severe disability or death within minutes in patients deprived of oxygen.


Tracey Haynes Photographs, traceyhaynes.com

Turtles have evolved slowly, a new study confirms. Decoding the genome of the western painted turtle reveals new clues to turtles’ longevity and the ability to survive without oxygen during long winters.

The research team includes scientists at Washington University School of Medicine in St. Louis, the University of California at Los Angeles, St. Louis University and other institutions. Their analysis is now available online in Genome Biology.

The new data confirm that the turtles’ pace of evolution parallels their speed on the ground. In other words, it’s exceedingly slow, about one-third of the rate of human evolution and one-fifth the rate of the fastest evolving python.

In fact, turtles have evolved a distinctive body design that has changed little over the past 210 million years, the authors note. Unlike other reptiles, turtles sport a sharp beak instead of teeth and live encased in a hard shell, a convenient home in which to hide when danger lurks.

“Turtles are nothing short of an enigma,” says senior author Richard K. Wilson, PhD, director of Washington University’s Genome Institute. “They may be slowly evolving, but turtles have developed an array of enviable features. They resist growing old, can reproduce even at advanced ages, and their bodies can freeze solid, thaw and survive without damaging delicate organs and tissues. We could learn a lot from them.”

The western painted turtle lives in freshwater ponds and streams and is the most widespread turtle in North America. It holds the distinction of being the first turtle and only the second reptile to have its genome sequenced. Comparing the turtle’s DNA to that of other animals, the scientists show that turtles are more closely related to birds than to lizards and snakes.

A close look at the turtle genome reveals that these creatures do not rely on novel genes for their unique physiological adaptions, such as the ability to withstand oxygen deprivation. Rather, they activate gene networks common to most vertebrates, including humans, but use those genes in different ways.

“This is a backdoor route for turtles to evolve,” says co-author Patrick Minx, of The Genome Institute. “Rather than evolve new genes, they adapted existing genes for new uses.”

For example, the scientists identified 19 genes in the brain and 23 in the heart that are activated in low-oxygen conditions, including one gene, APOLD1, whose expression is increased nearly 130 fold. These genes also are present in humans and may be important candidates to explore for treatments to reduce tissue damage due to oxygen deprivation.

Like other turtles, painted turtles are slow to age and are known for their long life spans. They become sexually mature at about 5 years of age and can live for 40 or more years in the wild. While impressive, some other turtle species don’t reach sexual maturity until their 40s and can live for well over a century.

Indeed, it is the long lapse of time from one generation to the next that is at the root of turtles’ slow evolution. Living longer gives them fewer opportunities to evolve, Minx says.

The researchers also identified common patterns of gene loss in the turtle associated with longevity, sex determination and a lack of teeth, findings that warrant further investigation.

One aspect of turtle evolution that is progressing rapidly is their threat of extinction. As many as half the 330 turtle species worldwide are considered threatened, making them the most endangered major group of vertebrates on a global scale. Their demise is due, in part, to human consumption, encouraged by unsubstantiated but persistent claims that eating turtles can increase life expectancy and cure cancer.

Habitat loss and modification are also important, but it is turtles’ popularity on restaurant menus and dinner tables, particularly in Asia, that is the biggest reason for their global decline, the researchers say.

“The challenge is to preserve the rich diversity of turtles that still exist on Earth as we continue to unravel their secrets for success,” says first author H. Bradley Shaffer, PhD, of the University of California at Los Angeles. “Turtles have a tremendous amount to tell us about evolution and human health, but time is running out.”

The research was funded by the National Human Genome Research Institute at the National Institutes of Health (NIH).

Shaffer HB, Minx P, Warren DE, Warren WC, Mardis ER, Wilson RK et al. The western painted turtle genome, a model of the extreme physiological adaptions in a slowly evolving lineage. Genome Biology. March 28, 2013.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Caroline Arbanas | Newswise
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>