Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Packaging from whey may soon be a cash cow

16.12.2008
Whey protein has the potential to substitute polymer layers in the packing of food, and in particular of fresh food.

By developing a technique for the manufacture of whey-coated plastic films with excellent oxygen barrier properties, improved water vapour properties and, in addition, antimicrobial activity, the consortium will improve food safety through the use of bio-based and partly also biodegradable packaging.

Using a by-product from cheese production that accumulates in vast amounts to create value for commercial use means killing two birds with one stone - without making any concessions concerning safety and shelf life. Active layers protect products by means of milk-derived antimicrobial compounds

Good packaging is much more than just advertising space for product information. It works as a barrier against water, vapours and odours that might interfere with the taste, appearance and nutritive value of the product. Using high-tech materials can expand packaging possibilities: It is envisaged that the "Wheylayer" material will extend the shelf life of products thanks to its milk-derived antimicrobial compounds. The structure of the material may also reduce the speed of rancidity. This means significant added value for both manufacturers and retailers. Whey has already proven to work as an oxygen barrier and is being subjected to further examination during the three-year duration of Wheylayer, an EU-funded project. The approach, which is being investigated by IRIS, an innovation centre, in co-operation with partners from seven European countries, is based on substantial know-how in the field of new trends in packaging. In addition, packaging associations1 and packaging producers (2), research providers (3) and process engineering experts (4), as well as representatives from the dairy industry (5) will be involved in implementing the Wheylayer project. A pan-European survey will be carried out amongst packaging companies and food manufacturers. SMEs/SME-AGs are very welcome to contact the local representative in their country, not only for further information but also to contribute to the discussion.

Novel, whey protein-based and coated plastic film will represent a real breakthrough in this field of business. Chemical-based co-polymers can be substituted by a natural protein. The whey layer can be easily broken down to separate the PE and PP layers in the sorting and cleaning phase. With conventional materials such as co-extruded polyethylene (PE) and polypropylene (PP), in some cases also coated with synthetic polymers or copolymers, up to 40% scrap is left for disposal after use. The new development will create cross-sectoral advantages: more efficient recycling, further benefits such as reduced CO2 emissions and greater autonomy from petrol will enable manufacturers to make better use of resources and save costs. The gap between dairy industry and packaging industry will be bridged by benefiting from the same process. Tapping new markets for whey, which to date is a by-product with no use or value, enhances their profits and strengthens the competitiveness of small and medium-sized enterprises. In addition, smaller enterprises in the packaging sector are placed in a better competitive position in the face of larger counterparts with the technical and financial resources to invest in new biodegradable films.

Various polymer coatings will be examined in the project. The adherence of the hydrophilic whey protein coating will be improved by means of a "sandwich construction" with a sub-layer between the whey coating and the hydrophobic polymer. Suitable materials for this layer are natural water-insoluble polymers, e.g. shellac. Alternatively, corona treatment will be studied for its positive effect on adherence. In order to put the "Wheylayer" technique into practice at a later stage of the project, three standard types of packaging will be developed at laboratory level: a stand-up pouch, a plastic tray or container, and a foil for wrapping. Thus the use of the biodegradable material will not be restricted to specific applications. In order to test and validate the industrial process in a real industrial environment and to demonstrate its performance and features, the "Wheylayer" prototype will be installed in the factory of one of the partners (TUBA). The results from this collective research activity will be communicated to interested persons via training sessions after the first two years. Oonagh Mc Nerney, Director of IRIS, states: "We are very proud, together with PIMEC, to be leading this highly innovative European research and development project. There is a lot of excitement around this project and positive results could have a very major impact for the packaging industry."

(1) Packaging associations: Italian plastics recyclers' association (ASSORIMAP), Slovenian Plasttechnics Cluster (PSC), Association of Hungarian Plastic Industry (HUPLAST), Petita i Mijana Empresa de Catalunya (PIMEC)

(2) Packaging producers: Centre for the Development of Plastic Application (CESAP), Lajovic Tuba Embalaza d.d. (TUBA), MÜKI LABOR Plastic testing and development Ltd (MÜKI)

(3) Research providers: Fraunhofer Institute for Process Engineering and Packaging (FRAUNHOFER), University of Pisa (UNIPI), ttz Bremerhaven (TTZ), Innovacio i Recerca Industrial i Sostenible (IRIS)

(4) Process engineering: Dunreidy Engineering Ltd. (DUN)

(5) Dairy industry: Lleters de Catalunya, (LLET), Meierei-Genossenschaft eG Langenhorn (MLANG)

Contact:
ttz Bremerhaven
Press and Public Relations
Telephone: 0049/ 471 / 4832-121/-124
Fax: 0049/ 471 / 4832-129
Email: brollert@ttz-bremerhaven.de

Britta Rollert | idw
Further information:
http://www.iris.cat
http://www.pimec-sefes.es
http://www.ttz-bremerhaven.de

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>