Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Packaging from whey may soon be a cash cow

Whey protein has the potential to substitute polymer layers in the packing of food, and in particular of fresh food.

By developing a technique for the manufacture of whey-coated plastic films with excellent oxygen barrier properties, improved water vapour properties and, in addition, antimicrobial activity, the consortium will improve food safety through the use of bio-based and partly also biodegradable packaging.

Using a by-product from cheese production that accumulates in vast amounts to create value for commercial use means killing two birds with one stone - without making any concessions concerning safety and shelf life. Active layers protect products by means of milk-derived antimicrobial compounds

Good packaging is much more than just advertising space for product information. It works as a barrier against water, vapours and odours that might interfere with the taste, appearance and nutritive value of the product. Using high-tech materials can expand packaging possibilities: It is envisaged that the "Wheylayer" material will extend the shelf life of products thanks to its milk-derived antimicrobial compounds. The structure of the material may also reduce the speed of rancidity. This means significant added value for both manufacturers and retailers. Whey has already proven to work as an oxygen barrier and is being subjected to further examination during the three-year duration of Wheylayer, an EU-funded project. The approach, which is being investigated by IRIS, an innovation centre, in co-operation with partners from seven European countries, is based on substantial know-how in the field of new trends in packaging. In addition, packaging associations1 and packaging producers (2), research providers (3) and process engineering experts (4), as well as representatives from the dairy industry (5) will be involved in implementing the Wheylayer project. A pan-European survey will be carried out amongst packaging companies and food manufacturers. SMEs/SME-AGs are very welcome to contact the local representative in their country, not only for further information but also to contribute to the discussion.

Novel, whey protein-based and coated plastic film will represent a real breakthrough in this field of business. Chemical-based co-polymers can be substituted by a natural protein. The whey layer can be easily broken down to separate the PE and PP layers in the sorting and cleaning phase. With conventional materials such as co-extruded polyethylene (PE) and polypropylene (PP), in some cases also coated with synthetic polymers or copolymers, up to 40% scrap is left for disposal after use. The new development will create cross-sectoral advantages: more efficient recycling, further benefits such as reduced CO2 emissions and greater autonomy from petrol will enable manufacturers to make better use of resources and save costs. The gap between dairy industry and packaging industry will be bridged by benefiting from the same process. Tapping new markets for whey, which to date is a by-product with no use or value, enhances their profits and strengthens the competitiveness of small and medium-sized enterprises. In addition, smaller enterprises in the packaging sector are placed in a better competitive position in the face of larger counterparts with the technical and financial resources to invest in new biodegradable films.

Various polymer coatings will be examined in the project. The adherence of the hydrophilic whey protein coating will be improved by means of a "sandwich construction" with a sub-layer between the whey coating and the hydrophobic polymer. Suitable materials for this layer are natural water-insoluble polymers, e.g. shellac. Alternatively, corona treatment will be studied for its positive effect on adherence. In order to put the "Wheylayer" technique into practice at a later stage of the project, three standard types of packaging will be developed at laboratory level: a stand-up pouch, a plastic tray or container, and a foil for wrapping. Thus the use of the biodegradable material will not be restricted to specific applications. In order to test and validate the industrial process in a real industrial environment and to demonstrate its performance and features, the "Wheylayer" prototype will be installed in the factory of one of the partners (TUBA). The results from this collective research activity will be communicated to interested persons via training sessions after the first two years. Oonagh Mc Nerney, Director of IRIS, states: "We are very proud, together with PIMEC, to be leading this highly innovative European research and development project. There is a lot of excitement around this project and positive results could have a very major impact for the packaging industry."

(1) Packaging associations: Italian plastics recyclers' association (ASSORIMAP), Slovenian Plasttechnics Cluster (PSC), Association of Hungarian Plastic Industry (HUPLAST), Petita i Mijana Empresa de Catalunya (PIMEC)

(2) Packaging producers: Centre for the Development of Plastic Application (CESAP), Lajovic Tuba Embalaza d.d. (TUBA), MÜKI LABOR Plastic testing and development Ltd (MÜKI)

(3) Research providers: Fraunhofer Institute for Process Engineering and Packaging (FRAUNHOFER), University of Pisa (UNIPI), ttz Bremerhaven (TTZ), Innovacio i Recerca Industrial i Sostenible (IRIS)

(4) Process engineering: Dunreidy Engineering Ltd. (DUN)

(5) Dairy industry: Lleters de Catalunya, (LLET), Meierei-Genossenschaft eG Langenhorn (MLANG)

ttz Bremerhaven
Press and Public Relations
Telephone: 0049/ 471 / 4832-121/-124
Fax: 0049/ 471 / 4832-129

Britta Rollert | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>