Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Packaging from whey may soon be a cash cow

16.12.2008
Whey protein has the potential to substitute polymer layers in the packing of food, and in particular of fresh food.

By developing a technique for the manufacture of whey-coated plastic films with excellent oxygen barrier properties, improved water vapour properties and, in addition, antimicrobial activity, the consortium will improve food safety through the use of bio-based and partly also biodegradable packaging.

Using a by-product from cheese production that accumulates in vast amounts to create value for commercial use means killing two birds with one stone - without making any concessions concerning safety and shelf life. Active layers protect products by means of milk-derived antimicrobial compounds

Good packaging is much more than just advertising space for product information. It works as a barrier against water, vapours and odours that might interfere with the taste, appearance and nutritive value of the product. Using high-tech materials can expand packaging possibilities: It is envisaged that the "Wheylayer" material will extend the shelf life of products thanks to its milk-derived antimicrobial compounds. The structure of the material may also reduce the speed of rancidity. This means significant added value for both manufacturers and retailers. Whey has already proven to work as an oxygen barrier and is being subjected to further examination during the three-year duration of Wheylayer, an EU-funded project. The approach, which is being investigated by IRIS, an innovation centre, in co-operation with partners from seven European countries, is based on substantial know-how in the field of new trends in packaging. In addition, packaging associations1 and packaging producers (2), research providers (3) and process engineering experts (4), as well as representatives from the dairy industry (5) will be involved in implementing the Wheylayer project. A pan-European survey will be carried out amongst packaging companies and food manufacturers. SMEs/SME-AGs are very welcome to contact the local representative in their country, not only for further information but also to contribute to the discussion.

Novel, whey protein-based and coated plastic film will represent a real breakthrough in this field of business. Chemical-based co-polymers can be substituted by a natural protein. The whey layer can be easily broken down to separate the PE and PP layers in the sorting and cleaning phase. With conventional materials such as co-extruded polyethylene (PE) and polypropylene (PP), in some cases also coated with synthetic polymers or copolymers, up to 40% scrap is left for disposal after use. The new development will create cross-sectoral advantages: more efficient recycling, further benefits such as reduced CO2 emissions and greater autonomy from petrol will enable manufacturers to make better use of resources and save costs. The gap between dairy industry and packaging industry will be bridged by benefiting from the same process. Tapping new markets for whey, which to date is a by-product with no use or value, enhances their profits and strengthens the competitiveness of small and medium-sized enterprises. In addition, smaller enterprises in the packaging sector are placed in a better competitive position in the face of larger counterparts with the technical and financial resources to invest in new biodegradable films.

Various polymer coatings will be examined in the project. The adherence of the hydrophilic whey protein coating will be improved by means of a "sandwich construction" with a sub-layer between the whey coating and the hydrophobic polymer. Suitable materials for this layer are natural water-insoluble polymers, e.g. shellac. Alternatively, corona treatment will be studied for its positive effect on adherence. In order to put the "Wheylayer" technique into practice at a later stage of the project, three standard types of packaging will be developed at laboratory level: a stand-up pouch, a plastic tray or container, and a foil for wrapping. Thus the use of the biodegradable material will not be restricted to specific applications. In order to test and validate the industrial process in a real industrial environment and to demonstrate its performance and features, the "Wheylayer" prototype will be installed in the factory of one of the partners (TUBA). The results from this collective research activity will be communicated to interested persons via training sessions after the first two years. Oonagh Mc Nerney, Director of IRIS, states: "We are very proud, together with PIMEC, to be leading this highly innovative European research and development project. There is a lot of excitement around this project and positive results could have a very major impact for the packaging industry."

(1) Packaging associations: Italian plastics recyclers' association (ASSORIMAP), Slovenian Plasttechnics Cluster (PSC), Association of Hungarian Plastic Industry (HUPLAST), Petita i Mijana Empresa de Catalunya (PIMEC)

(2) Packaging producers: Centre for the Development of Plastic Application (CESAP), Lajovic Tuba Embalaza d.d. (TUBA), MÜKI LABOR Plastic testing and development Ltd (MÜKI)

(3) Research providers: Fraunhofer Institute for Process Engineering and Packaging (FRAUNHOFER), University of Pisa (UNIPI), ttz Bremerhaven (TTZ), Innovacio i Recerca Industrial i Sostenible (IRIS)

(4) Process engineering: Dunreidy Engineering Ltd. (DUN)

(5) Dairy industry: Lleters de Catalunya, (LLET), Meierei-Genossenschaft eG Langenhorn (MLANG)

Contact:
ttz Bremerhaven
Press and Public Relations
Telephone: 0049/ 471 / 4832-121/-124
Fax: 0049/ 471 / 4832-129
Email: brollert@ttz-bremerhaven.de

Britta Rollert | idw
Further information:
http://www.iris.cat
http://www.pimec-sefes.es
http://www.ttz-bremerhaven.de

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>