Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Packaging expert sees a social revolution in the evolving barcode

14.10.2011
What if you could trace the history of everything you buy back to its origins?

Using your smart phone camera, you could learn what factory made the ingredients in your heart medication, what country grew the corn in your breakfast cereal, or even how to recycle the phone. You could follow the whole life cycle of a product and everyone who handled it along the way to ensure that the medicine you’re taking isn’t counterfeit and the food you’re eating is safe.

This reality is on the horizon, said University of Illinois food science and human nutrition professor Scott Morris, an expert on the history and evolution of packaging and the author of “Food and Package Engineering,” a new textbook published by Wiley Blackwell. Barcodes, the familiar black-and-white labels on packages that began as a means to scan prices or track inventory, are evolving into a broader class of identifiers in new and startling ways, said Morris, who also is a professor of agricultural and biological engineering.

As the technology advances, these electronic identifiers allow access to more information about the contents and history of products and are opening new channels of communication between buyers and sellers.

The QR code, a new species of two-dimensional barcode that can be scanned with a cell phone, increasingly supplies a direct link between the shopper in the store and information about the scanned product online.

“Customers’ experience and interaction with packaging are undergoing radical and unprecedented changes,” Morris wrote in an article in Packaging World Magazine early this year. “Emerging now is a more complex system that includes an entire peer group of customers giving continuous, real-time analysis of the product.”

Manufacturers and retailers are trying to take advantage of this new technology-driven interaction, but they are also struggling to cope, Morris said. The shopper has unprecedented power to identify the best products at the best prices he or she can find. And those who are unhappy with their purchases can let the world know about it in real time.

Companies have a lot at stake – and a lot to gain from more sophisticated barcodes, Morris said. Those who embrace the changes can quickly enlist the online crowd to help develop their products and packaging. Identifiers that capture the life history of each package and its contents can dramatically enhance the security, accountability and traceability of the items people purchase and use every day, he said.

Most people are surprised to learn, for example, that pharmaceutical companies in the U.S. rarely track their inventory once it leaves the manufacturing plant, Morris said. This has resulted in a gray market of drugs that are stolen and redistributed. (In one famous case in March, 2010, thieves cut a hole in the roof of a warehouse owned by Eli Lilly & Co. and made off with $75 million in prescription drugs.) Some of these items go to other countries and some end up on pharmacy shelves in the U.S. via unscrupulous distributors, Morris said.

A more sophisticated system could help identify and isolate contaminated drugs, foods or other dangerous products anywhere in the supply chain, Morris said, limiting harm to customers and reducing liability for producers.

If used properly, a global identification system would increase efficiency and profits, expanding the “just-in-time” delivery of goods to retailers. It also would allow companies to get a more detailed picture of the locations, preferences and buying habits of customers, Morris said.

Even though barcodes, QR codes and even RFID tags (which are read by radio waves rather than scanners) are available, Morris said, the structure of the actual identifier is a work in progress. Several organizations, in particular GS1, the global consortium that allocates barcodes, are developing new standards for these identifiers.

“The format is not the issue here,” Morris said. “The issue is, what information can be carried with a physical object, and what use do we make of it? That’s where it really gets interesting. Because then you’re not just dealing with a can of soup, a bottle of pills or an aircraft part. You’re dealing with the whole global economy all at once.”

Editor’s notes: To reach Scott Morris, call 217-333-9330;
email smorris@illinois.edu.
The book, “Food and Package Engineering,” is available online.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>