Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone reduces fungal spoilage of fruits and vegetables

11.04.2011
Storing fruits and vegetables in ozone-enriched environments reduces spoilage explains a scientist at the Society for General Microbiology's Spring Conference in Harrogate. Dr Ian Singleton explains how ozone treatment could be a safe, effective replacement for pesticides as it leaves no residue on foods.

It is estimated that up to 30% of fresh produce can be lost due to microbial spoilage. Dr Singleton from Newcastle University explains that low levels of gaseous ozone are able to prevent fungal spoilage in a wide range of stored fresh produce, including strawberries, tomatoes, grapes and plums.

His work has shown that enriching the storage environment with ozone causes a substantial decline in fungal spore production as well as a reduction in visible lesions on fruits that are already infected. Fruit stored at low levels of ozone for up to 8 days prevented almost 95% of disease from developing, depending on the fruit and levels of fungal infection.

Fungal contamination is the most common cause of spoilage of stored fruit, salads and vegetables and the risk of microbial contamination increases with longer storage periods. From the 1950s onwards, heat treatment was replaced with cheap and effective synthetic fungicides, often used in combination with pre-pack sanitation treatment containing chlorine or bromine.

Dr Singleton explains why alternative methods to reduce fungal spoilage are needed. "There are public concerns over pesticide residues on fresh produce. Ozone is a viable alternative to pesticides as it is safe to use and effective against a wide spectrum of micro-organisms. Importantly, it leaves no detectable residues in contrast to traditional methods of preserving fresh produce."

Interestingly, Dr Singleton's team found that exposing tomatoes to ozone before infecting them with fungus also reduced spoilage. "This suggests that ozone treatment exerts a 'memory' or 'vaccination' effect that protects fruit from damage. It is unclear how this phenomenon works, but is certainly worthy of further, detailed investigation," suggested Dr Singleton.

Careful work is also needed to optimize levels of ozone and length of exposure for each variety of produce. "Different fruits have been shown to have different tolerances for ozone. We need to look carefully at how we control the atmospheric concentration of the gas in stores and transit containers, since levels of ozone that are too high can damage produce, causing financial losses".

Laura Udakis | EurekAlert!
Further information:
http://www.sgm.ac.uk

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>