Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Even oysters pay taxes

19.03.2010
'Metabolic taxation' accounts for part of difference between fast and slow growth of animals, according to a new theory

In physical, as in financial growth, it's not what you make but what you keep that counts, USC marine biologists believe.

Their study of genes associated with growth in oysters suggests that slow-growing animals waste energy in two ways: by making too much of some protein building blocks and then by having to dispose of the excess.

Donal Manahan, director of the USC Wrigley Institute for Environmental Studies and the study's senior author, calls the inefficient process "metabolic taxation."

By contrast, fast-growing oysters make just enough and keep most of it, Manahan hypothesized.

The theory of metabolic taxation needs verification, but if proven correct, it would help to answer two basic questions:

• Why do some animals grow big, while others stay small? Differences in diet account for about half the size variation, according to Manahan. Gene expression related to metabolic taxation could explain part of the rest.

• What is the biological cost of rapid growth: lower disease resistance, perhaps, or blander flavor? If metabolic taxation is real, rapidly growing animals are simply more efficient at making proteins and do not necessarily need to sacrifice other traits.

Manahan compared metabolic taxation to a vehicle assembly plant with supply chain problems, where too many engines come in one day and not enough transmissions the next.

The vehicle assembly plant in the cell is the ribosome, which makes and assembles protein parts from genetic instructions.

Manahan and co-author Eli Meyer – his former graduate student at USC and now a postdoctoral fellow at the University of Texas, Austin – identified 17 oyster genes related to the ribosome.

The expression of those genes was out of balance in slow-growing oysters, Meyer and Manahan observed. They suspect that the underlying problem is a lack of coordination in the production of protein parts.

Proteins are crucial to growth since they make up the bulk of an animal's muscles, organs and tissues.

A fast-growing oyster is simply "well-tuned," Manahan said.

"It's not just about quickness, it's about coordination. And that was a big surprise to me," Manahan said.

Meyer and Manahan also identified 17 more genes related to energy metabolism, feeding activity and other factors related to growth.

The 34 genes represent the most promising subset of 350 growth-related genes identified by Meyer, Manahan, his USC Wrigley Institute colleague Dennis Hedgecock and other researchers in a study published in 2007 in Proceedings of the National Academy of Sciences.

Manahan and Hedgecock's long-term goal is to identify the genes responsible for hybrid vigor: the ability of some children of crossbreeding to outgrow both parents.

Many plants have hybrid vigor. Seed companies exploited this property to increase corn yields many times over from the 1920s to the present. Manahan sees potential for growing more food from the ocean by studying the "seeds" of animal development – the larval stages.

Most animals do not express hybrid vigor to the same extent. That makes oysters, which do show characteristics of hybrid vigor, unusually strong candidates for aquaculture.

"Their hybrids grow much faster than either of the parents. And this is like corn," Manahan said.

With the latest study, published this month in The Journal of Experimental Biology, "we believe that we have identified some of the genes that are biological markers for hybrid vigor," Manahan said.

With this advance, it should be possible to identify fast-growing oyster families early in larval development by their genetic signature – potentially a big step forward in oyster farming.

Manahan calls oysters the "corn of the sea" for their potential to help feed the planet as traditional fisheries collapse and land-based farming reaches its limit. Currently, the Pacific oyster is the most farmed aquatic species on the planet.

The "Green Revolution" that multiplied crop yields needs to be followed by a "Blue Revolution" in ocean farming, Manahan has argued.

"We're going to have to make future decisions as a society [on] how to provide enough food for a growing population."

To view a VIDEO presentation on the Blue Revolution by Donal Manahan at the 2009 TEDx conference at USC, go to http://stevens.usc.edu/playvideo.php?v=86

The W. M. Keck Foundation and the National Science Foundation funded the research.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>