Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When oxygen is short, EGFR prevents maturation of cancer-fighting miRNAs

24.05.2013
With tumor suppressors frozen in adolescence, resistant cancer cells cheat death

Even while being dragged to its destruction inside a cell, a cancer-promoting growth factor receptor fires away, sending signals that thwart the development of tumor-suppressing microRNAs (miRNAs) before it's dissolved, researchers reported in an early online publication at Nature.

Under conditions of oxygen starvation often encountered by tumors, the epidermal growth factor receptor (EGFR) gums up the cell's miRNA-processing machinery, an international team led by scientists at The University of Texas MD Anderson Cancer Center discovered.

"So when hypoxia stresses a cell, signaling by EGFR prevents immature miRNAs from growing up to fight cancer," said senior author Mien-Chie Hung, Ph.D., professor and chair of MD Anderson's Department of Molecular and Cellular Oncology and holder of the Ruth Legett Jones Distinguished Chair.

The group's findings point to a potential new prognostic marker for breast cancer, Hung noted, but also provide the first evidence of a growth factor signaling pathway regulating miRNA maturation.

"Inside of a cell, you have signal induction, in this case through EGFR, and you also have a protein complex that processes precursors into mature miRNA to perform a function. They didn't appear to talk to each other, it's as if one speaks English and the other Chinese," Hung said. "This is the first paper to show how they communicate."

The scientists established the relationship in cell line experiments, confirmed it in a mouse model and human breast cancer samples, then found that it reduced breast cancer patient survival in a review of 125 cases.

A new cancer-promoting role identified for EGFR

EGFR penetrates the cell membrane to receive signals from growth factors outside of the cell. After a growth factor binds to it, EGFR conveys the signal into the cell by attaching phosphate groups to other proteins, often acting as a molecular "on switch."

In many cancers, EGFR is overexpressed or dysfunctional, constantly sending signals to cells to divide. Hung and colleagues found that EGFR also fuels cancer progression by stifling tumor-suppressing miRNAs.

As a tumor grows, large portions of its interior can become starved for oxygen (hypoxia) for lack of adequate blood vessels. This stress suffocates many tumor cells, but the few that endure become highly malignant, resist treatment and are most likely to spread, Hung said.

Anti-angiogenesis drugs designed to kill tumors by blocking their ability to spin webs of supportive blood vessels often succeed at first, Hung said, but then fail against the more malignant cells that survive hypoxia.

When hypoxia hits, EGFR gets active and gets eaten

Low-oxygen conditions cause EGFR overexpression. EGFR also is pulled into the cell interior, captured in cavities called vesicles and eventually fed into lysosomes, a membrane-enclosed organelle loaded with enzymes to dissolve proteins.

It was known that EGFR continues to signal even while caught in the vesicles, which actually prolongs its activation. Hung and colleagues found that EGFR signals to a key protein in miRNA processing called argonaute 2, or AGO2.

AGO2 connects with two other proteins called Dicer and TRBP to form a complex that processes microRNA precursors into mature miRNAs, which regulate gene expression after messenger RNA has been expressed but before it's translated into a protein.

Oncoprotein-regulating miRNAs don't grow up

The scientists found that EGFR attaches phosphate groups to AGO2, which in turn weakens AGO2's ability to connect with Dicer to produce mature microRNAs. EGFR's effect is stronger during oxygen starvation than under normal conditions.

The team identified a number of specific miRNAs affected by EGFR, most of which have been reported to have tumor suppressor characteristics. The miRNAs regulated by phosphorylated AGO2, including miR-31, miR-192 and miR-193a-5p, also shared a long-loop structure in their precursors that miRNAs unaffected by AGO2 phosphorylation lack.

Hypoxic environments around tumors promote metastasis by helping cells evade programmed cell death. Hung and colleagues showed that EGFR-mediated AGO2 phosphorylation blocks cell death and enhances invasiveness under hypoxia.

Experiments in a mouse model of breast cancer confirmed that expression of EGFR and the presence of phosphorylated AGO2 increase during tumor progression under oxygen-starved conditions.

EGFR-AGO2 connection found in human breast tumors; reduces survival

The hypoxia-EGFR-AGO2 connection was strong in tumor samples from 128 breast cancer patients, but it was low or absent in normal breast tissue. In 125 breast cancer cases analyzed by the team, half of 62 patients with high levels of phosphorylated AGO2 survived to 48 months and beyond. Median survival had not been reached for the 63 patients in the low-level group, but 78 percent had survived to 48 months.

"One can imagine other receptors for platelet-derived growth factor and insulin-like growth factor also regulating miRNAs, perhaps by regulating Dicer or TBRP," Hung said. "This is a turning-point paper; it will induce lots of new questions for scientists to pursue."

Co-authors with Hung are lead author Jia Shen, Weiya Xia, M.D., Yekaterina Khotskaya, Ph.D., Longfei Huo, Ph.D., Seung-Oe Lim, Ph.D., Yi Du, Ph.D., Yan Wang, Ph.D., Jennifer Hsu, Ph.D., and Yung Carmen Lam, Ph.D., all of MD Anderson's Department of Molecular and Cellular Oncology; Wei-Chao Chang, Ph.D., of China Medical University, Taichung, Taiwan, and Chung-Hsuan Chen, Ph.D., of Genomics Research Center of Academica Sinica, Taipei; Yun Wu, M.D., Ph.D., of MD Anderson's Department of Pathology; Brian James, Ph.D., Xiuping Liu, M.D., and Chang-Gong Liu, Ph.D., of MD Anderson's Department of Experimental Therapeutics; and Kotaro Nakanishi, Ph.D., and Dinshaw Patel, Ph.D., of Memorial Sloan-Kettering Cancer Center.

Shen is a graduate student at The University of Texas Graduate School of Biomedical Sciences at Houston, a joint program of MD Anderson and The University of Texas Health Science Center at Houston.

This research was funded by grants from the U.S. National Institutes of Health (CA109311 and CA099031), MD Anderson's Cancer Center Support Grant from the National Cancer Institute (CA16672), the U.S. National Breast Cancer Foundation, MD Anderson's Center for Biological Pathways, Susan G. Komen for the Cure, the Sister Institution Fund of China Medical University and Hospital and MD Anderson, the Taiwan Cancer Research Center of Excellence, a Private University grant from Taiwan and the Taiwan Program for Stem Cell and Regenerative Medicine Frontier Research.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>