Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Oxygen-Deprived Baby Rats Fare Worse If Kept Warm

Article is published in the American Journal of Physiology—Regulatory, Integrative, and Comparative Physiology

Premature infants’ immature lungs and frequent dips in blood pressure make them especially vulnerable to a condition called hypoxia in which their tissues don’t receive enough oxygen, sometimes leading to permanent brain damage. New animal research suggests that a common practice in caring for these babies might in fact exacerbate this condition, increasing the chances for long-term neurological deficits.

A new study shows that rat pups exposed to low oxygen for up to three hours, but kept warm, have changes in insulin and glucose regulation that lead to hypoglycemia. Those allowed to spontaneously cool, a natural response to decreased oxygen in the blood, kept their glucose and insulin values more stable over time. The findings suggest that cooling premature infants who have undergone oxygen deprivation, rather than placing them in incubators or under warmers, could help stave off brain damage associated with this condition.

The article is entitled “Effects of Body Temperature Maintenance of Glucose, Insulin, and Corticosterone Responses to Acute Hypoxia in the Neonatal Rat.” It appears in the American Journal of Physiology – Regulatory, Integrative, and Comparative Physiology, published by the American Physiological Society.

The researchers worked with rats that were either two days old or eight days old. Since rats are born at an earlier developmental stage than humans, these ages were chosen to be analogous to critical periods of human neurological development when premature infants might be especially vulnerable to oxygen deprivation. Litters of pups of either age were separated into three groups: One breathed room air with normal levels of oxygen and was kept warm at normal body temperature with a heating pad; one was exposed to air with about a third of typical oxygen levels and allowed to spontaneously cool; and a third was exposed to low-oxygen air, but kept warm at normal body temperature. Over the course of a three-hour period, the researchers monitored the pups for levels of glucose, insulin, and other proteins and hormones in the bloodstream.


The researchers found that the younger pups exposed to hypoxia and heat had dramatic spikes and dips in insulin over the three-hour period, with insulin quadrupling over the first hour, then falling dramatically by the third. In the older animals, glucose rose over the first hour, then fell significantly below baseline by the third. Though hypoxia alone caused significant changes in glucose and insulin concentrations in both younger and older animals, these effects weren’t as pronounced.

Importance of the Findings

These findings suggest that keeping the animals warm may encourage swings in blood sugar that increase metabolic and physiologic demands and decrease the amount of glucose available to tissues. In rats, and perhaps in premature babies as well, this effect could lead to a variety of problems, including neurological damage. The authors note that, to their knowledge, there are no specific guidelines that address body temperature management for human premature babies with hypoxia. “We hope that our studies in the neonatal rat will translate to appropriate studies and guidelines for the control of body temperature in the hypoxic newborn,” the authors say.

Study Team

The study was conducted by Hershel Raff, Eric D. Bruder, and Mitchell A. Guenther of Aurora St. Luke’s Medical Center and the Medical College of Wisconsin, Milwaukee, Wis.
NOTE TO EDITORS: The study is available online at To request an interview with a member of the research team, please contact Donna Krupa at, @Phyziochick, or 301.634.7209.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS; has been an integral part of the discovery process for 125 years. To keep up with the science, follow @Phyziochick on Twitter.

Donna Krupa | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>