Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen-Deprived Baby Rats Fare Worse If Kept Warm

14.02.2012
Article is published in the American Journal of Physiology—Regulatory, Integrative, and Comparative Physiology

Premature infants’ immature lungs and frequent dips in blood pressure make them especially vulnerable to a condition called hypoxia in which their tissues don’t receive enough oxygen, sometimes leading to permanent brain damage. New animal research suggests that a common practice in caring for these babies might in fact exacerbate this condition, increasing the chances for long-term neurological deficits.

A new study shows that rat pups exposed to low oxygen for up to three hours, but kept warm, have changes in insulin and glucose regulation that lead to hypoglycemia. Those allowed to spontaneously cool, a natural response to decreased oxygen in the blood, kept their glucose and insulin values more stable over time. The findings suggest that cooling premature infants who have undergone oxygen deprivation, rather than placing them in incubators or under warmers, could help stave off brain damage associated with this condition.

The article is entitled “Effects of Body Temperature Maintenance of Glucose, Insulin, and Corticosterone Responses to Acute Hypoxia in the Neonatal Rat.” It appears in the American Journal of Physiology – Regulatory, Integrative, and Comparative Physiology, published by the American Physiological Society.

Methodology
The researchers worked with rats that were either two days old or eight days old. Since rats are born at an earlier developmental stage than humans, these ages were chosen to be analogous to critical periods of human neurological development when premature infants might be especially vulnerable to oxygen deprivation. Litters of pups of either age were separated into three groups: One breathed room air with normal levels of oxygen and was kept warm at normal body temperature with a heating pad; one was exposed to air with about a third of typical oxygen levels and allowed to spontaneously cool; and a third was exposed to low-oxygen air, but kept warm at normal body temperature. Over the course of a three-hour period, the researchers monitored the pups for levels of glucose, insulin, and other proteins and hormones in the bloodstream.

Results

The researchers found that the younger pups exposed to hypoxia and heat had dramatic spikes and dips in insulin over the three-hour period, with insulin quadrupling over the first hour, then falling dramatically by the third. In the older animals, glucose rose over the first hour, then fell significantly below baseline by the third. Though hypoxia alone caused significant changes in glucose and insulin concentrations in both younger and older animals, these effects weren’t as pronounced.

Importance of the Findings

These findings suggest that keeping the animals warm may encourage swings in blood sugar that increase metabolic and physiologic demands and decrease the amount of glucose available to tissues. In rats, and perhaps in premature babies as well, this effect could lead to a variety of problems, including neurological damage. The authors note that, to their knowledge, there are no specific guidelines that address body temperature management for human premature babies with hypoxia. “We hope that our studies in the neonatal rat will translate to appropriate studies and guidelines for the control of body temperature in the hypoxic newborn,” the authors say.

Study Team

The study was conducted by Hershel Raff, Eric D. Bruder, and Mitchell A. Guenther of Aurora St. Luke’s Medical Center and the Medical College of Wisconsin, Milwaukee, Wis.
NOTE TO EDITORS: The study is available online at http://bit.ly/ykfZu5. To request an interview with a member of the research team, please contact Donna Krupa at dkrupa@the-aps.org, @Phyziochick, or 301.634.7209.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society (APS; www.the-APS.org/press) has been an integral part of the discovery process for 125 years. To keep up with the science, follow @Phyziochick on Twitter.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>