Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen 'Sensor' May Shut Down DNA Transcription

20.06.2012
Change in key ingredient changes protein shape in methanogen

A key component found in an ancient anaerobic microorganism may serve as a sensor to detect potentially fatal oxygen, a University of Arkansas researcher and his colleagues have found.

This helps researchers learn more about the function of these components, called iron-sulfur clusters, which occur in different parts of cells in all living creatures.

Daniel Lessner, assistant professor of biological sciences, and his colleagues report their findings in the Journal of Biological Chemistry.

Lessner studies methanogens, ancient anaerobic microorganisms that live in extreme environments, including the human gut. In these organisms, he looks at RNA polymerase, a protein that “reads” DNA and produces RNA, which contains codes to build proteins. This process is found in most of the things we think of as “living.”

Methanogens interest space scientists because they can survive in extreme temperature conditions and in hostile environments. They interest health researchers because some species found in the human gut may influence digestion. They also interest energy producers because they are the only life form that produces methane gas. Because of this, it’s important to understand how these ancient microscopic creatures work.

The iron-sulfur clusters also are important because they exist in most life forms, including humans – in fact, you could not survive without your iron-sulfur clusters. “It is likely that life evolved at the interface of iron and sulfur minerals,” Lessner said. In some methanogens and other single-celled organisms, the protein RNA polymerase contains iron-sulfur clusters. However, these iron-sulfur clusters are not typically found in this protein, except in certain species, including methanogens.

Better understanding of the role of iron-sulfur clusters in this simple organism will help scientists understand and perhaps control production pathways in these microorganisms to produce methane gas as a biofuel.

The researchers decided to see if they could figure out why these organisms contain iron-sulfur clusters in their RNA polymerase. They found that without the clusters, a part of the protein changed its shape, which would in turn change its interactions with other parts of the protein. The clusters might serve to regulate the assembly of the parts of RNA polymerase.

The researchers believe that the iron-sulfur clusters serve as a sensor to shut down the creation of RNA from DNA in the presence of oxygen because oxygen reacts with iron-sulfur clusters to destroy them. This in turn would help the methanogen survive.

“This may be a way to conserve energy,” Lessner said. “Organisms may have retained these clusters to serve a similar role in diverse species so that organisms can respond to changes in the environment.

“This is the first step in figuring out the protein properties and seeing how it works,” he said. Next the researchers will genetically modify the protein to change the number of iron-sulfur clusters and see what happens.

This paper was made possible by a National Science Foundation grant.
CONTACTS:
Dan Lessner, assistant professor, biological sciences
J. William Fulbright College of Arts and Sciences
479-575-2239, dlessner@uark.edu
Melissa Lutz Blouin, senior director of academic communications
University Relations
479-575-5555, blouin@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Scientists discover species of dolphin that existed along South Carolina coast
24.08.2017 | New York Institute of Technology

nachricht The science of fluoride flipping
24.08.2017 | University of North Carolina Health Care

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Scientists discover species of dolphin that existed along South Carolina coast

24.08.2017 | Life Sciences

The science of fluoride flipping

24.08.2017 | Life Sciences

Optimizing therapy planning for cancers of the liver

24.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>