Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxidative stress and altered gene expression occurs in a metabolic liver disease model

30.10.2012
A team of researchers under the direction of Dr. Jeffrey Teckman in the Department of Pediatrics at St. Louis University, have demonstrated that oxidative stress occurs in a genetic model of alpha-1-antitrypsin deficiency.
This is the most common genetic liver disorder in children and can lead to cirrhosis and hepatocellular carcinoma in adults. Some cases may require liver transplantation. The report, published in the October 2012 issue of Experimental Biology and Medicine, suggests that treatment with antioxidants might be of therapeutic benefit for some individuals.

"We have evidence of oxidative stress in livers from an animal model that expresses the classical Z variant form of alpha-1-antitrypsin. The animal model recapitulates the human liver disease, in which the livers accumulate polymers of alpha-1-antitrypsin mutant Z protein, developing fibrosis and hepatocellular carcinoma with age", says Dr. Marcus. Potentially, non-invasive treatment involving long-term regulation of antioxidant levels could ameliorate the oxidative stress and retard the advancement of disease.

"This is an exciting new report which may help us understand the extreme variability between different patients with this same, single gene, metabolic liver disease. These findings may inform the pathophysiology of other liver diseases as well", says Dr. Teckman. In clinical studies, liver disease from alpha-1-antitrypsin mutant Z protein has shown considerable variability in severity and progression, suggesting that as yet undescribed genetic modifiers may influence disease development. Based on this study, certain antioxidant enzymes involved in oxidative stress defense could be useful targets for further examination. Using microarray technology, the investigators have identified a number of potential alterations in gene expression pathways that could modify the development of liver pathologies. This information could be useful in defining genetic variants that may influence individual susceptibility and in facilitating the design of appropriate treatments.

Steven R. Goodman, PhD, Editor-in-Chief of Experimental Biology and Medicine said, "Teckman and colleagues have demonstrated that oxidative stress occurs in an animal model of Alpha-1-antitrypsin deficiency. This suggests that antioxidant treatment may be beneficial in this most common genetic liver disorder in children."
Experimental Biology and Medicine is a journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. The journal was first established in 1903.

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.rsmjournals.com.

Dr. Nancy Marcus | EurekAlert!
Further information:
http://www.slu.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Millions through license revenues

27.04.2017 | Health and Medicine

The TU Ilmenau develops tomorrow’s chip technology today

27.04.2017 | Information Technology

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>