Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxidative DNA damage repair

29.12.2011
Oxidative stress damages DNA. Researchers in the Vetsuisse Faculty have now decoded the mechanism that repairs DNA damaged in this way. This repair mechanism could lead to less invasive approaches in cancer therapy and contribute to the development of new tests for the early diagnosis of cancer.

Oxidative stress is the cause of many serious diseases such as cancer, Alzheimer’s, arteriosclerosis and diabetes. It occurs when the body is exposed to excessive amounts of electrically charged, aggressive oxygen compounds. These are normally produced during breathing and other metabolic processes, but also in the case of ongoing stress, exposure to UV light or X-rays. If the oxidative stress is too high, it overwhelms the body’s natural defences. The aggressive oxygen compounds destroy genetic material, resulting in what are referred to as harmful 8-oxo-guanine base mutations in the DNA.

DNA repair mechanism decoded
Together with the University of Oxford, Enni Markkanen, a veterinarian in the working group of Prof. Ulrich Hübscher from the Institute of Veterinary Biochemistry and Molecular Biology at the University of Zurich has decoded and characterized the repair mechanism for the mutated DNA bases. This mechanism efficiently copies thousands of 8-oxo-guanines without their harmful mutations, thus normally preventing the negative consequences of 8-oxo-guanine damage. In their study, published in «PNAS», the researchers outline the detailed processes involved in the local and temporal coordination of this repair mechanism.

Prof. Ulrich Hübscher hopes that this basic research can be used therapeutically. «We expect that the DNA repair mechanism discovered here will lead to less invasive approaches in cancer therapy and that it will be possible to develop new clinical tests for the early detection of certain types of cancer.» In cooperation with University Hospital Zurich, a study is already underway that involves examining samples of different types of cancer for the repair gene and its regulation.

Literature:
Enni Markkanen, Barbara van Loon, Elena Ferrari, Jason L. Parsons, Grigory L. Dianov, and Ulrich Hübscher. Regulation of oxidative DNA damage repair by DNA polymerase λ and MutYH by crosstalk of phosphorylation and ubiquitination. Proceedings of the American Academy of Sciences. PNAS. December 26, 2011. www.pnas.org/cgi/doi/10.1073/pnas.1110449109

Nathalie Huber | idw
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>