Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Oxidation sets off fatal structural change of human prion proteins

Prion diseases like the Creutzfeldt-Jakob disease mainly appear spontaneously in humans. They are characterized by the aggregation of a misfolded isoform of the cellular prion protein. Scientists at the Max Planck Institute of Biochemistry and the LMU Munich have now uncovered the cause of the misfolding: an oxidation within the prion molecule.

Prion diseases can be sporadic, inherited and infectious. The vast majority (85 percent) of prion diseases in humans can be attributed to a spontaneous structural conversion of the cellular prion protein: Originally dominated by alpha-helices as structural elements, the prion protein is transformed into its misfolded "scrapie" isoform which is dominated by accordion-like folded protein sheets, so called beta-sheets. This changes its chemical properties: The molecule becomes less water-soluble and has a strong aggregation tendency.

"Once there is a misfolded and aggregated prion protein present in the tissue, a chain reaction is triggered where one protein after another changes its shape, like dominos knocking over each other", says Professor Armin Giese (Center for Neuropathology and Prion Research, LMU Munich). The initial event in this misfolding cascade was so far widely unknown. Now the scientists have identified an oxidation within the prion protein as the cause of the structural conversion: "Although other mechanisms are also discussed, we are convinced that the oxidation of the amino acid methionine within the prion protein plays a key role", reports PD Dr. Nediljko Budisa, the head of the research group "Molecular Biotechnology"at the Max Planck Institute.

While the hydrophobic methionine usually stabilizes alpha-helices effectively, its oxidized form supports the structural conversion into beta-sheets. If the oxidative stress within the cell is sufficient enough to oxidise certain methionine molecules within the prion protein, an irreversible process with serious consequences starts: "The prion protein gets literally pushed apart because of the oxidation", says Budisa, "obviously this is devastating for the folding".

To prove these findings conclusively the scientists used an elegant trick: The methionine molecules were replaced with isosteric, chemically stable, non-oxidizable analogs, i.e. with the more hydrophobic norleucine (simulates non-oxidized methionine) and the highly hydrophilic methoxinine (simulates oxidized methionine). "In this way, we created artificial prion proteins, which, like Yin and Yang, reflect two extreme conditions: One prion, that contains non-oxidized methionine molecules only, and one in which all methionine molecules are oxidized", explains Budisa. The norleucine variant resulted in an alpha-helix rich protein that lacks the in vitro aggregation protein of the parent protein. In contrast, the methoxinine variant resulted in a beta-sheet rich protein with strong aggregation tendency.

These results support a correlation of oxidative stress in cells and the misfolding of proteins. They are highly relevant not only for prion research, but also for other neurodegenerative diseases that are associated with protein misfolding. Research in this field is of general importance, because it can give new insights in neurodegenerative diseases and help with the development of new therapeutic strategies.

Original publication:
C. Wolschner, A. Giese, H. Kretzschmar, R. Huber, L. Moroder, N. Budisa: Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein. Proceedings of the National Academy of Sciences USA, Early Edition (April 2009)

doi 10.1073/PNAS.0902688106

PD Dr. Nediljko Budisa
Molecular Biotechnology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
Dr. Monika Gödde
Public Relations
Max Planck Institute of Biochemistry
An Klopferspitz 18
82152 Martinsried
Tel. ++49/89-8578-3882 / 8578-2040

Dr. Monika Gödde | idw
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>