Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxidation sets off fatal structural change of human prion proteins

23.04.2009
Prion diseases like the Creutzfeldt-Jakob disease mainly appear spontaneously in humans. They are characterized by the aggregation of a misfolded isoform of the cellular prion protein. Scientists at the Max Planck Institute of Biochemistry and the LMU Munich have now uncovered the cause of the misfolding: an oxidation within the prion molecule.

Prion diseases can be sporadic, inherited and infectious. The vast majority (85 percent) of prion diseases in humans can be attributed to a spontaneous structural conversion of the cellular prion protein: Originally dominated by alpha-helices as structural elements, the prion protein is transformed into its misfolded "scrapie" isoform which is dominated by accordion-like folded protein sheets, so called beta-sheets. This changes its chemical properties: The molecule becomes less water-soluble and has a strong aggregation tendency.

"Once there is a misfolded and aggregated prion protein present in the tissue, a chain reaction is triggered where one protein after another changes its shape, like dominos knocking over each other", says Professor Armin Giese (Center for Neuropathology and Prion Research, LMU Munich). The initial event in this misfolding cascade was so far widely unknown. Now the scientists have identified an oxidation within the prion protein as the cause of the structural conversion: "Although other mechanisms are also discussed, we are convinced that the oxidation of the amino acid methionine within the prion protein plays a key role", reports PD Dr. Nediljko Budisa, the head of the research group "Molecular Biotechnology"at the Max Planck Institute.

While the hydrophobic methionine usually stabilizes alpha-helices effectively, its oxidized form supports the structural conversion into beta-sheets. If the oxidative stress within the cell is sufficient enough to oxidise certain methionine molecules within the prion protein, an irreversible process with serious consequences starts: "The prion protein gets literally pushed apart because of the oxidation", says Budisa, "obviously this is devastating for the folding".

To prove these findings conclusively the scientists used an elegant trick: The methionine molecules were replaced with isosteric, chemically stable, non-oxidizable analogs, i.e. with the more hydrophobic norleucine (simulates non-oxidized methionine) and the highly hydrophilic methoxinine (simulates oxidized methionine). "In this way, we created artificial prion proteins, which, like Yin and Yang, reflect two extreme conditions: One prion, that contains non-oxidized methionine molecules only, and one in which all methionine molecules are oxidized", explains Budisa. The norleucine variant resulted in an alpha-helix rich protein that lacks the in vitro aggregation protein of the parent protein. In contrast, the methoxinine variant resulted in a beta-sheet rich protein with strong aggregation tendency.

These results support a correlation of oxidative stress in cells and the misfolding of proteins. They are highly relevant not only for prion research, but also for other neurodegenerative diseases that are associated with protein misfolding. Research in this field is of general importance, because it can give new insights in neurodegenerative diseases and help with the development of new therapeutic strategies.

Original publication:
C. Wolschner, A. Giese, H. Kretzschmar, R. Huber, L. Moroder, N. Budisa: Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein. Proceedings of the National Academy of Sciences USA, Early Edition (April 2009)

doi 10.1073/PNAS.0902688106

Contact:
PD Dr. Nediljko Budisa
Molecular Biotechnology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
budisa@biochem.mpg.de
Dr. Monika Gödde
Public Relations
Max Planck Institute of Biochemistry
An Klopferspitz 18
82152 Martinsried
Tel. ++49/89-8578-3882 / 8578-2040
goedde@biochem.mpg.de

Dr. Monika Gödde | idw
Further information:
http://www.biochem.mpg.de/budisa/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>