Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxidation sets off fatal structural change of human prion proteins

23.04.2009
Prion diseases like the Creutzfeldt-Jakob disease mainly appear spontaneously in humans. They are characterized by the aggregation of a misfolded isoform of the cellular prion protein. Scientists at the Max Planck Institute of Biochemistry and the LMU Munich have now uncovered the cause of the misfolding: an oxidation within the prion molecule.

Prion diseases can be sporadic, inherited and infectious. The vast majority (85 percent) of prion diseases in humans can be attributed to a spontaneous structural conversion of the cellular prion protein: Originally dominated by alpha-helices as structural elements, the prion protein is transformed into its misfolded "scrapie" isoform which is dominated by accordion-like folded protein sheets, so called beta-sheets. This changes its chemical properties: The molecule becomes less water-soluble and has a strong aggregation tendency.

"Once there is a misfolded and aggregated prion protein present in the tissue, a chain reaction is triggered where one protein after another changes its shape, like dominos knocking over each other", says Professor Armin Giese (Center for Neuropathology and Prion Research, LMU Munich). The initial event in this misfolding cascade was so far widely unknown. Now the scientists have identified an oxidation within the prion protein as the cause of the structural conversion: "Although other mechanisms are also discussed, we are convinced that the oxidation of the amino acid methionine within the prion protein plays a key role", reports PD Dr. Nediljko Budisa, the head of the research group "Molecular Biotechnology"at the Max Planck Institute.

While the hydrophobic methionine usually stabilizes alpha-helices effectively, its oxidized form supports the structural conversion into beta-sheets. If the oxidative stress within the cell is sufficient enough to oxidise certain methionine molecules within the prion protein, an irreversible process with serious consequences starts: "The prion protein gets literally pushed apart because of the oxidation", says Budisa, "obviously this is devastating for the folding".

To prove these findings conclusively the scientists used an elegant trick: The methionine molecules were replaced with isosteric, chemically stable, non-oxidizable analogs, i.e. with the more hydrophobic norleucine (simulates non-oxidized methionine) and the highly hydrophilic methoxinine (simulates oxidized methionine). "In this way, we created artificial prion proteins, which, like Yin and Yang, reflect two extreme conditions: One prion, that contains non-oxidized methionine molecules only, and one in which all methionine molecules are oxidized", explains Budisa. The norleucine variant resulted in an alpha-helix rich protein that lacks the in vitro aggregation protein of the parent protein. In contrast, the methoxinine variant resulted in a beta-sheet rich protein with strong aggregation tendency.

These results support a correlation of oxidative stress in cells and the misfolding of proteins. They are highly relevant not only for prion research, but also for other neurodegenerative diseases that are associated with protein misfolding. Research in this field is of general importance, because it can give new insights in neurodegenerative diseases and help with the development of new therapeutic strategies.

Original publication:
C. Wolschner, A. Giese, H. Kretzschmar, R. Huber, L. Moroder, N. Budisa: Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein. Proceedings of the National Academy of Sciences USA, Early Edition (April 2009)

doi 10.1073/PNAS.0902688106

Contact:
PD Dr. Nediljko Budisa
Molecular Biotechnology
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
budisa@biochem.mpg.de
Dr. Monika Gödde
Public Relations
Max Planck Institute of Biochemistry
An Klopferspitz 18
82152 Martinsried
Tel. ++49/89-8578-3882 / 8578-2040
goedde@biochem.mpg.de

Dr. Monika Gödde | idw
Further information:
http://www.biochem.mpg.de/budisa/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>