Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overexpression of splicing protein in skin repair causes early changes seen in skin cancer

20.01.2014
Normally, tissue injury triggers a mechanism in cells that tries to repair damaged tissue and restore the skin to a normal, or homeostatic state. Errors in this process can give rise to various problems, such as chronic inflammation, which is a known cause of certain cancers.

"It has been noted that cancer resembles a state of chronic wound healing, in which the wound-healing program is erroneously activated and perpetuated," says Professor Adrian Krainer of Cold Spring Harbor Laboratory (CSHL).


Overexpression of the SRSF6 gene in mice leads tissue to display the molecular signatures of wound-healing (right panel). These signatures are evident when one compares tissue in which the gene's expression is normal (left panel).

Credit: Krainer Laboratory, Cold Spring Harbor Laboratory

In a paper published today in Nature Structural & Molecular Biology, a team led by Dr. Krainer reports that a protein they show is normally involved in healing wounds and maintaining homeostasis in skin tissue is also, under certain conditions, a promoter of invasive and metastatic skin cancers.

The protein, called SRSF6, is what biologists call a splicing factor: it is one of many proteins involved in an essential cellular process called splicing. In splicing, an RNA "message" copied from a gene is edited so that it includes only the portions needed to instruct the cell how to produce a specific protein. The messages of most genes can be edited in multiple ways, using different splicing factors; thus, a single gene can give rise to multiple proteins, with distinct functions.

The SRSF6 protein, while normally contributing to wound healing in skin tissue, when overproduced can promote abnormal growth of skin cells and cancer, Krainer's team demonstrated in experiments in mice. Indeed, they determined the spot on a particular RNA message – one that encodes the protein tenascin C – where SRSF6 binds abnormally, giving rise to alternate versions of the tenascin C protein that are seen in invasive and metastatic cancers.

The CSHL team also found that overproduction of SRSF6 in mice results in the depletion of a type of stem cell called Lgr6+. These skin stem cells reside in the upper part of the hair follicle and participate in wound healing when tissue is damaged. Thus, aberrant alternative splicing by SRSF6 on the one hand increases cell proliferation, but on the other hand prevents the process by which proliferating cells mature. "The cells remain in an abnormal activation state that would otherwise be temporary during normal tissue repair. More studies are needed to understand this phenomenon in detail," says Mads Jensen, Ph.D., first author of the new paper who performed the experiments as a postdoctoral researcher in the Krainer lab.

The research described in this release was made possible by grants from the U. S. National Cancer Institute, CSHL Shared Resources Cancer Center Support grant, and the Danish Cancer Society.

"Splicing factor SRSF6 promotes hyperplasia of sensitized skin," appears January 19, 2014 in Nature Structural & Molecular Biology. The authors are: Mads A. Jensen, John E. Wilkinson and Adrian R. Krainer. The paper can be read online at: http://www.nature.com/index.html?file=/nsmb/archive/index.html

About Cold Spring Harbor Laboratory

Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for the impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. CSHL is a private, not-for-profit institution on the north shore of Long Island.

Peter Tarr | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>