Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Overcoming anthrax bacterium's natural defenses could hold key to new treatments

19.05.2010
Army scientists have discovered a way to "trick" the bacterium that causes anthrax into shedding its protective covering, making it easier for the body's immune system to mount a defense. The study, which appears in this month's issue of the journal MICROBIOLOGY, could lead to new approaches for treating anthrax infection.

Bacillus anthracis, the causative agent of anthrax, is particularly lethal because of its protective coating, or capsule, which enables the pathogen to escape destruction by the host's immune system. A key bacterial enzyme called capsule depolymerase, or CapD, anchors the capsule to the cell surface. CapD also cuts and releases part of the capsule into small fragments that are thought to interfere with specific parts of the immune system, offering further protection to the bacterium. The rest of the capsule remains intact.

Finding a way to cause B. anthracis to unmask itself, using the bacterium's own machinery, would be a novel approach to defeating the pathogen. So scientists at the U.S. Army Medical Research Institute of Infectious Diseases (USAMRIID) induced B. anthracis to make higher-than-normal amounts of CapD, resulting in release of the capsule fragments. This left very little capsule attached to the bacterial cells. As a result, the unprotected bacteria were left vulnerable to immediate detection and destruction by the cells of the immune system.

"By engineering B. anthracis to over-produce CapD, we are effectively turning the bacterium's own weapon on itself," explained Dr. Arthur Friedlander, one of the study's principal investigators. He believes the USAMRIID group's findings could have significant clinical impact.

"Many pathogenic bacteria, including B. anthracis, produce a capsule surrounding them that prevents the infected host from killing them, improving their chances of causing disease," he explained. "Understanding the mechanisms of virulence used by the anthrax bacterium is vital to developing medical countermeasures against it."

Anthrax most commonly occurs in wild and domestic mammals, although it has the potential to be used as a biological threat agent. Symptoms vary depending on the route of exposure; however, mild fever, fatigue and muscle aches usually begin within 4-6 days of exposure. As the bacteria multiply in the lymph nodes, toxemia progresses and the potential for widespread tissue dissemination, destruction and organ failure increases. Severe breathing difficulty, meningitis and shock can follow. Up to 90 percent of untreated cases of inhalational anthrax result in death.

"This study provides significant insight into the pathogenesis of anthrax infection, tracing the connection between B. anthracis gene expression to its effect on host response," said Colonel John P. Skvorak, commander of USAMRIID.

USAMRIID, located at Fort Detrick, Maryland, is the lead medical research laboratory for the U.S. Department of Defense Biological Defense Research Program, and plays a key role in national defense and in infectious disease research. The Institute conducts basic and applied research on biological threats resulting in medical solutions (such as vaccines, drugs and diagnostics) to protect the warfighter. While USAMRIID's primary mission is focused on the military, its research often has applications that benefit society as a whole. USAMRIID is a subordinate laboratory of the U.S. Army Medical Research and Materiel Command.

Caree Vander Linden | EurekAlert!
Further information:
http://www.us.army.mil
http://www.usamriid.army.mil

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>