Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Outsmarting algae -- RIT scientist finds the turn-off switch

14.09.2011
Professor André Hudson's research could advance algaecide development
Algaecide is no crime.

Consider that some strains of algae produce toxins lethal to wildlife, fish and plants. Even the less harmful varieties suck oxygen out of water, suffocating living creatures in lakes, ponds, pools and aquariums. Recent algal blooms in the Great Lakes, for instance, threaten critical ecosystems.

Rochester Institute of Technology scientist André Hudson and colleagues have figured out how to outsmart the organism.

"We have recently deciphered the structure of an essential enzyme in the photosynthetic organism that is a target for algaecide development," says Hudson, assistant professor in the School of Life Sciences in RIT's College of Science.

All organisms that undergo photosynthesis—plants (multi-cellular), algae (single-cellular) and certain kinds of bacteria—produce lysine, an amino acid, or a building block of protein for growth and development. Humans and animals cannot make lysine and must acquire the essential amino acid directly or indirectly from fruits and vegetables.

Hudson discovered a new pathway for lysine synthesis in plants and certain pathogenic bacteria in 2006 while working as a postdoctoral fellow at Rutgers University. His current research is aimed at finding targets for the enzymes associated with the lysine biosynthesis pathways.

"Since humans do not possess any of the enzymatic machinery to make lysine—and now that we know that is it an essential enzyme in all photosynthetic organisms—we can develop a compound that would block the enzyme from functioning in algae. It won't affect humans because we don't have the pathway(s) to begin with," Hudson says.

An important first step for algaecide development was the crystallization of the enzyme conducted by Hudson's colleague Renwick Dobson, professor at the University of Melbourne and University of Canterbury.

The process of protein crystallography separates proteins from the solution in which they are suspended. The next step shoots an X-ray beam through the freed crystals to reveal, with the help of computer algorithms, how the protein is folded in its three-dimensional configuration.

"This is important because once you know where the substrate—the key—fits into the enzyme—the lock—one can design a pseudo substrate compound that looks like the natural substrate but it's a better 'key for the lock.' It will prevent the natural key from opening the door, inhibiting or blocking the enzyme from functioning."

Solving the three-dimensional structure for the algae enzyme gives scientists a map for developing an algaecide that will target the organism without harming other plant life growing in the same environment.

Undergraduate student Irma Girón co-authored both papers with Hudson and Dobson. The biotechnology major presented a poster at the American Society for Plant Biologists meeting, in August in Minnesota, describing how the algae enzyme can be used as an algaecide target.

"It's not typical for an undergraduate students to have two published manuscripts in peer-reviewed journals before they graduate," Hudson says. "Irma was very instrumental in getting both publications."

The research team submitted their information revealing the structure of the algae enzyme to the Protein Data Bank, a public database available to scientists around the world.

"The database is a source for scientists who can take this information to the next step to find the right inhibitors for the enzyme and produce an actual algaecide, if they are willing and able," Hudson says.

Hudson's results were published recently in Acta Crystallographica Section F and PLoS ONE.

Susan Gawlowicz | EurekAlert!
Further information:
http://www.rit.edu

Further reports about: Hudson RIT algal bloom amino acid essential enzyme

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>