Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ottawa scientists discover new way to enhance stem cells to stimulate muscle regeneration

08.06.2009
Scientists at the Ottawa Hospital Research Institute (OHRI) and the University of Ottawa have discovered a powerful new way to stimulate muscle regeneration, paving the way for new treatments for debilitating conditions such as muscular dystrophy.

The research, to be published in the June 5 issue of Cell Stem Cell, shows for the first time that a protein called Wnt7a increases the number of stem cells in muscle tissue, leading to accelerated growth and repair of skeletal muscle.

"This discovery shows us that by targeting stem cells to boost their numbers, we can improve the body's ability to repair muscle tissue," said senior author Dr. Michael Rudnicki. Dr. Rudnicki is the Scientific Director of Canada's Stem Cell Network and a Senior Scientist at OHRI and Director of OHRI's Sprott Centre for Stem Cell Research, as well as a Professor of Medicine at the University of Ottawa.

Stem cells give rise to every tissue and organ in the body. Satellite stem cells are specialized muscle stem cells that live in adult skeletal muscle tissue and have the ability to both replicate and differentiate into various types of muscle cells. Dr. Rudnicki's team found that the Wnt7a protein, when introduced into mouse muscle tissue, significantly increased the population of these satellite stem cells and fueled the regeneration process, creating bigger and stronger muscles. Muscle tissue mass was increased by nearly 20 per cent in the study.

"Our findings point the way to the development of new therapeutic treatment for muscular diseases such as muscular dystrophy, sarcopenia and muscle wasting conditions resulting from extended hospital stays and surgeries," said Dr. Rudnicki.

This project was funded by the Canadian Institutes of Health Research, the Muscular Dystrophy Association, the National Institutes of Health, the Howard Hughes Medical Institute, Canada's Stem Cell Network and the Canada Research Chairs Program.

About the Stem Cell Network

The Stem Cell Network, established in 2001, brings together more than 80 leading scientists, clinicians, engineers, and ethicists from universities and hospitals across Canada with a mandate to investigate the immense therapeutic potential of stem cells for the treatment of diseases currently incurable by conventional approaches. Hosted by the University of Ottawa, the Stem Cell Network is one of Canada's Networks of Centres of Excellence funded through Industry Canada and its three granting councils. www.stemcellnetwork.ca

About the Ottawa Hospital Research Institute

The Ottawa Hospital Research Institute (OHRI) is the research arm of The Ottawa Hospital and is an affiliated institute of the University of Ottawa, closely associated with the University's Faculties of Medicine and Health Sciences. The OHRI includes more than 1,300 scientists, clinical investigators, graduate students, postdoctoral fellows, and staff conducting research to improve the understanding, prevention, diagnosis and treatment of human disease. www.ohri.ca

For more information contact:

Aneka Rao
Communications Coordinator
Stem Cell Network
613 739 6683
arao@stemcellnetwork.ca
Jennifer Paterson
Director, Communications and Public Relations
Ottawa Hospital Research Institute
613 798 5555 x 73325
613 614 5253 (cell)
jpaterson@ohri.ca

Jennifer Paterson | EurekAlert!
Further information:
http://www.ohri.ca

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>