Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ottawa scientists discover new way to enhance stem cells to stimulate muscle regeneration

08.06.2009
Scientists at the Ottawa Hospital Research Institute (OHRI) and the University of Ottawa have discovered a powerful new way to stimulate muscle regeneration, paving the way for new treatments for debilitating conditions such as muscular dystrophy.

The research, to be published in the June 5 issue of Cell Stem Cell, shows for the first time that a protein called Wnt7a increases the number of stem cells in muscle tissue, leading to accelerated growth and repair of skeletal muscle.

"This discovery shows us that by targeting stem cells to boost their numbers, we can improve the body's ability to repair muscle tissue," said senior author Dr. Michael Rudnicki. Dr. Rudnicki is the Scientific Director of Canada's Stem Cell Network and a Senior Scientist at OHRI and Director of OHRI's Sprott Centre for Stem Cell Research, as well as a Professor of Medicine at the University of Ottawa.

Stem cells give rise to every tissue and organ in the body. Satellite stem cells are specialized muscle stem cells that live in adult skeletal muscle tissue and have the ability to both replicate and differentiate into various types of muscle cells. Dr. Rudnicki's team found that the Wnt7a protein, when introduced into mouse muscle tissue, significantly increased the population of these satellite stem cells and fueled the regeneration process, creating bigger and stronger muscles. Muscle tissue mass was increased by nearly 20 per cent in the study.

"Our findings point the way to the development of new therapeutic treatment for muscular diseases such as muscular dystrophy, sarcopenia and muscle wasting conditions resulting from extended hospital stays and surgeries," said Dr. Rudnicki.

This project was funded by the Canadian Institutes of Health Research, the Muscular Dystrophy Association, the National Institutes of Health, the Howard Hughes Medical Institute, Canada's Stem Cell Network and the Canada Research Chairs Program.

About the Stem Cell Network

The Stem Cell Network, established in 2001, brings together more than 80 leading scientists, clinicians, engineers, and ethicists from universities and hospitals across Canada with a mandate to investigate the immense therapeutic potential of stem cells for the treatment of diseases currently incurable by conventional approaches. Hosted by the University of Ottawa, the Stem Cell Network is one of Canada's Networks of Centres of Excellence funded through Industry Canada and its three granting councils. www.stemcellnetwork.ca

About the Ottawa Hospital Research Institute

The Ottawa Hospital Research Institute (OHRI) is the research arm of The Ottawa Hospital and is an affiliated institute of the University of Ottawa, closely associated with the University's Faculties of Medicine and Health Sciences. The OHRI includes more than 1,300 scientists, clinical investigators, graduate students, postdoctoral fellows, and staff conducting research to improve the understanding, prevention, diagnosis and treatment of human disease. www.ohri.ca

For more information contact:

Aneka Rao
Communications Coordinator
Stem Cell Network
613 739 6683
arao@stemcellnetwork.ca
Jennifer Paterson
Director, Communications and Public Relations
Ottawa Hospital Research Institute
613 798 5555 x 73325
613 614 5253 (cell)
jpaterson@ohri.ca

Jennifer Paterson | EurekAlert!
Further information:
http://www.ohri.ca

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>