Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ottawa scientists discover new way to enhance stem cells to stimulate muscle regeneration

08.06.2009
Scientists at the Ottawa Hospital Research Institute (OHRI) and the University of Ottawa have discovered a powerful new way to stimulate muscle regeneration, paving the way for new treatments for debilitating conditions such as muscular dystrophy.

The research, to be published in the June 5 issue of Cell Stem Cell, shows for the first time that a protein called Wnt7a increases the number of stem cells in muscle tissue, leading to accelerated growth and repair of skeletal muscle.

"This discovery shows us that by targeting stem cells to boost their numbers, we can improve the body's ability to repair muscle tissue," said senior author Dr. Michael Rudnicki. Dr. Rudnicki is the Scientific Director of Canada's Stem Cell Network and a Senior Scientist at OHRI and Director of OHRI's Sprott Centre for Stem Cell Research, as well as a Professor of Medicine at the University of Ottawa.

Stem cells give rise to every tissue and organ in the body. Satellite stem cells are specialized muscle stem cells that live in adult skeletal muscle tissue and have the ability to both replicate and differentiate into various types of muscle cells. Dr. Rudnicki's team found that the Wnt7a protein, when introduced into mouse muscle tissue, significantly increased the population of these satellite stem cells and fueled the regeneration process, creating bigger and stronger muscles. Muscle tissue mass was increased by nearly 20 per cent in the study.

"Our findings point the way to the development of new therapeutic treatment for muscular diseases such as muscular dystrophy, sarcopenia and muscle wasting conditions resulting from extended hospital stays and surgeries," said Dr. Rudnicki.

This project was funded by the Canadian Institutes of Health Research, the Muscular Dystrophy Association, the National Institutes of Health, the Howard Hughes Medical Institute, Canada's Stem Cell Network and the Canada Research Chairs Program.

About the Stem Cell Network

The Stem Cell Network, established in 2001, brings together more than 80 leading scientists, clinicians, engineers, and ethicists from universities and hospitals across Canada with a mandate to investigate the immense therapeutic potential of stem cells for the treatment of diseases currently incurable by conventional approaches. Hosted by the University of Ottawa, the Stem Cell Network is one of Canada's Networks of Centres of Excellence funded through Industry Canada and its three granting councils. www.stemcellnetwork.ca

About the Ottawa Hospital Research Institute

The Ottawa Hospital Research Institute (OHRI) is the research arm of The Ottawa Hospital and is an affiliated institute of the University of Ottawa, closely associated with the University's Faculties of Medicine and Health Sciences. The OHRI includes more than 1,300 scientists, clinical investigators, graduate students, postdoctoral fellows, and staff conducting research to improve the understanding, prevention, diagnosis and treatment of human disease. www.ohri.ca

For more information contact:

Aneka Rao
Communications Coordinator
Stem Cell Network
613 739 6683
arao@stemcellnetwork.ca
Jennifer Paterson
Director, Communications and Public Relations
Ottawa Hospital Research Institute
613 798 5555 x 73325
613 614 5253 (cell)
jpaterson@ohri.ca

Jennifer Paterson | EurekAlert!
Further information:
http://www.ohri.ca

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>