Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ottawa scientists discover new way to enhance stem cells to stimulate muscle regeneration

08.06.2009
Scientists at the Ottawa Hospital Research Institute (OHRI) and the University of Ottawa have discovered a powerful new way to stimulate muscle regeneration, paving the way for new treatments for debilitating conditions such as muscular dystrophy.

The research, to be published in the June 5 issue of Cell Stem Cell, shows for the first time that a protein called Wnt7a increases the number of stem cells in muscle tissue, leading to accelerated growth and repair of skeletal muscle.

"This discovery shows us that by targeting stem cells to boost their numbers, we can improve the body's ability to repair muscle tissue," said senior author Dr. Michael Rudnicki. Dr. Rudnicki is the Scientific Director of Canada's Stem Cell Network and a Senior Scientist at OHRI and Director of OHRI's Sprott Centre for Stem Cell Research, as well as a Professor of Medicine at the University of Ottawa.

Stem cells give rise to every tissue and organ in the body. Satellite stem cells are specialized muscle stem cells that live in adult skeletal muscle tissue and have the ability to both replicate and differentiate into various types of muscle cells. Dr. Rudnicki's team found that the Wnt7a protein, when introduced into mouse muscle tissue, significantly increased the population of these satellite stem cells and fueled the regeneration process, creating bigger and stronger muscles. Muscle tissue mass was increased by nearly 20 per cent in the study.

"Our findings point the way to the development of new therapeutic treatment for muscular diseases such as muscular dystrophy, sarcopenia and muscle wasting conditions resulting from extended hospital stays and surgeries," said Dr. Rudnicki.

This project was funded by the Canadian Institutes of Health Research, the Muscular Dystrophy Association, the National Institutes of Health, the Howard Hughes Medical Institute, Canada's Stem Cell Network and the Canada Research Chairs Program.

About the Stem Cell Network

The Stem Cell Network, established in 2001, brings together more than 80 leading scientists, clinicians, engineers, and ethicists from universities and hospitals across Canada with a mandate to investigate the immense therapeutic potential of stem cells for the treatment of diseases currently incurable by conventional approaches. Hosted by the University of Ottawa, the Stem Cell Network is one of Canada's Networks of Centres of Excellence funded through Industry Canada and its three granting councils. www.stemcellnetwork.ca

About the Ottawa Hospital Research Institute

The Ottawa Hospital Research Institute (OHRI) is the research arm of The Ottawa Hospital and is an affiliated institute of the University of Ottawa, closely associated with the University's Faculties of Medicine and Health Sciences. The OHRI includes more than 1,300 scientists, clinical investigators, graduate students, postdoctoral fellows, and staff conducting research to improve the understanding, prevention, diagnosis and treatment of human disease. www.ohri.ca

For more information contact:

Aneka Rao
Communications Coordinator
Stem Cell Network
613 739 6683
arao@stemcellnetwork.ca
Jennifer Paterson
Director, Communications and Public Relations
Ottawa Hospital Research Institute
613 798 5555 x 73325
613 614 5253 (cell)
jpaterson@ohri.ca

Jennifer Paterson | EurekAlert!
Further information:
http://www.ohri.ca

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>