Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Osteoporosis: Antibody crystallised

05.09.2016

Inhibiting a protein called Sclerostin could probably help treating the bone-loss disease osteoporosis. New findings at the University of Würzburg could stimulate this research.

Osteoporosis particularly affects elderly women: the bone’s structure weakens and the risk of suffering fractures rises. As prophylaxis patients are advised to have a healthy diet and perform physical exercises; when the risk of bone fractures is high, medicine preventing further bone loss is prescribed in addition.


Model of a Sclerostin-fragment (green) bound to the antibody AbD09097 (heavy and light chain in cyan and red, respectively; surface representation in grey)

(Figure: Thomas Müller)

In the search for better treatments for this disease the protein Sclerostin, which plays an important role in bone metabolism, is of major interest. When its function is impeded, bone resorption diminishes and bone re-growth is stimulated.

First clinical trials with a Sclerostin-inhibiting antibody developed by the companies Amgen and UCB showed promising results in that the bone mass of participants suffering from osteoporosis increased. Currently, studies are continued at several locations, amongst others Würzburg, Munich and Dresden.

Verena Boschert, Postdoc in the team of structural biologist Prof. Thomas Müller at the Julius-von-Sachs Institute (Julius-Maximilians-Universität Würzburg, JMU, in Bavaria, Germany) is also working on the protein Sclerostin. In a collaborative project with several project partners and funded by the European Union and the Deutsche Forschungsgemeinschaft novel Sclerostin-inhibiting antibodies were generated and analysed for their suitability as osteoporosis treatment option.

Now, for the first time the JMU scientists crystallized an antibody effective against Sclerostin and analysed its mode of action in detail. Recently, these results were published in the journal Open Biology. “Our findings could have a positive impact on the design of new inhibitory antibodies targeting Sclerostin”, says Boschert.

Cooperation with two companies

In this project the scientists from Würzburg are working together with partners from industry. In cooperation with AbD-Serotec, having its German subsidiary in Puchheim, ten promising antibodies were developed in the initial round. After testing in cell culture one (AbD09097) showed the favoured activity to neutralize Sclerostin.

Together with the company Pepscan (Lelystad/ The Netherlands) and the Leibniz Institute for Pharmacology in Berlin an in-depth analysis of the binding epitopes was performed using peptide chemistry and NMR spectroscopy. From these methods the binding site of the antibody in Sclerostin could be deduced.

Further steps in the project

”Until now, we could only determine the structure of the antibody alone “, Boschert points out. As the next step it is planned to crystallize the antibody together with Sclerostin or a binding fragment. Thereby, a more detailed view of the interaction between antibody and its target will be obtained.

The sclerostin-neutralizing antibody AbD09097 recognizes an epitope adjacent to sclerostin's binding site for the Wnt co-receptor LRP6. V. Boschert, C. Frisch, J. W. Back, K. van Pee, S. E. Weidauer, E.-M. Muth, P. Schmieder, M. Beerbaum, A. Knappik, P. Timmerman, T. D. Mueller. Open Biology 2016 6 160120; DOI: 10.1098/rsob.160120. Published 24 August 2016

Contact

Prof. Dr. Thomas Müller, Biocenter, Julius-von-Sachs Institute, JMU, T +49 31 31-89207, mueller@biozentrum.uni-wuerzburg.de

Dr. Verena Boschert, Biocenter, Julius-von-Sachs Institute, JMU, T +49 931 31-80910, verena.boschert@uni-wuerzburg.de

Weitere Informationen:

http://rsob.royalsocietypublishing.org/content/6/8/160120 Link to Open-Access article

Robert Emmerich | Julius-Maximilians-Universität Würzburg

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

Im Focus: Stronger evidence for a weaker Atlantic overturning

The Atlantic overturning – one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards – is weaker today than any time before in more than 1000 years. Sea surface temperature data analysis provides new evidence that this major ocean circulation has slowed down by roughly 15 percent since the middle of the 20th century, according to a study published in the highly renowned journal Nature by an international team of scientists. Human-made climate change is a prime suspect for these worrying observations.

“We detected a specific pattern of ocean cooling south of Greenland and unusual warming off the US coast – which is highly characteristic for a slowdown of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Improved stability of plastic light-emitting diodes

19.04.2018 | Power and Electrical Engineering

Enduring cold temperatures alters fat cell epigenetics

19.04.2018 | Life Sciences

New capabilities at NSLS-II set to advance materials science

18.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>