Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orphan receptor proteins deliver 2 knock-out punches to glioblastoma cells

17.12.2014

Two related proteins exert a lethal double whammy effect against glioblastoma cells when activated with a small molecule, say researchers at Georgetown Lombardi Comprehensive Cancer Center.

The scientists say when activated, one protein, called the short form, stops glioblastoma cells from replicating their DNA, and the other, called the long form, prevents cell division if the DNA has already been replicated, explains Rebecca Riggins, PhD, assistant professor of oncology at Georgetown Lombardi. The study was posted online Dec. 12 in the journal Cell Cycle.

Both proteins are produced by the estrogen-related receptor beta (ERRβ) gene. They are known as "orphan receptors" because they don't bind to any substances naturally produced by the body. ERRβ proteins are similar in shape to the receptor that binds the hormone estrogen -- hence their name -- but they do not bind estrogen and are not otherwise related. Both men and women have ERRβ genes.

In this study, Riggins and her co-author, postdoctoral fellow Mary Heckler, PhD, examined glioblastoma cells in the laboratory for the presence of ERRβ and found both long and short forms. To understand what these proteins were doing, they used a laboratory chemical, DY131, which had been designed to bind and activate these proteins.

To their surprise, the researchers discovered that DY131 exerted a strong, but distinct, effect on both the short and long forms of ERRβ. The short form had been known to act as a tumor suppressor in prostate cancer, and a similar anti-cancer action was found by the researchers in glioblastoma. The study, however, is the first to find a function for the long form in cancer.

"While much work remains to understand the clinical potential of this finding, it may ultimately be possible to directly target the long and short forms of ERRβ in combination with other therapies to improve outcomes in glioblastoma," Riggins says.

Riggins, a member of the breast cancer program at Georgetown Lombardi, is now studying the behavior of the same proteins when activated by DY131 in triple negative breast cancer, for which there is no therapeutic target.

The study was funded by a pilot grant from Partners in Research and the National Cancer Institute (R21CA191444 and T32CA009686).

About Georgetown Lombardi Comprehensive Cancer Center

Georgetown Lombardi Comprehensive Cancer Center, part of Georgetown University Medical Center and MedStar Georgetown University Hospital, seeks to improve the diagnosis, treatment, and prevention of cancer through innovative basic and clinical research, patient care, community education and outreach, and the training of cancer specialists of the future. Georgetown Lombardi is one of only 41 comprehensive cancer centers in the nation, as designated by the National Cancer Institute (grant #P30 CA051008), and the only one in the Washington, DC area. For more information, go to http://lombardi.georgetown.edu.

About Georgetown University Medical Center

Georgetown University Medical Center (GUMC) is an internationally recognized academic medical center with a three-part mission of research, teaching and patient care (through MedStar Health). GUMC's mission is carried out with a strong emphasis on public service and a dedication to the Catholic, Jesuit principle of cura personalis -- or "care of the whole person." The Medical Center includes the School of Medicine and the School of Nursing & Health Studies, both nationally ranked; Georgetown Lombardi Comprehensive Cancer Center, designated as a comprehensive cancer center by the National Cancer Institute; and the Biomedical Graduate Research Organization, which accounts for the majority of externally funded research at GUMC including a Clinical and Translational Science Award from the National Institutes of Health.

Karen Teber | EurekAlert!

Further reports about: DNA GUMC MedStar breast breast cancer glioblastoma cells proteins receptor proteins

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>