Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL process improves catalytic rate of enzymes by 3,000 percent

18.04.2012
Light of specific wavelengths can be used to boost an enzyme's function by as much as 30 fold, potentially establishing a path to less expensive biofuels, detergents and a host of other products.

In a paper published in The Journal of Physical Chemistry Letters, a team led by Pratul Agarwal of the Department of Energy's Oak Ridge National Laboratory described a process that aims to improve upon nature - and it happens in the blink of an eye.

"When light enters the eye and hits the pigment known as rhodopsin, it causes a complex chemical reaction to occur, including a conformational change," Agarwal said. "This change is detected by the associated protein and through a rather involved chain of reactions is converted into an electrical signal for the brain."

With this as a model, Agarwal's team theorized that it should be possible to improve the catalytic efficiency of enzyme reactions by attaching chemical elements on the surface of an enzyme and manipulating them with the use of tuned light.

The researchers introduced a light-activated molecular switch across two regions of the enzyme Candida antarctica lipase B, or CALB - which breaks down fat molecules -- identified through modeling performed on DOE's Jaguar supercomputer.

"Using this approach, our preliminary work with CALB suggested that such a technique of introducing a compound that undergoes a light-inducible conformational change onto the surface of the protein could be used to manipulate enzyme reaction," Agarwal said.

While the researchers obtained final laboratory results at industry partner AthenaES, computational modeling allowed Agarwal to test thousands of combinations of enzyme sites, modification chemistry, different wavelengths of light, different temperatures and photo-activated switches. Simulations performed on Jaguar also allowed researchers to better understand how the enzyme's internal motions control the catalytic activity.

"This modeling was very important as it helped us identify regions of the enzyme that were modified by interactions with chemicals," said Agarwal, a member of ORNL's Computer Science and Mathematics Division. "Ultimately, the modeling helped us understand how the mechanical energy from the surface can eventually be transferred to the active site where it is used to conduct the chemical reaction."

Agarwal noted that enzymes are present in every organism and are widely used in industry as catalysts in the production of biofuels and countless other every day products. Researchers believe this finding could have immense potential for improving enzyme efficiency, especially as it relates to biofuels.

Other authors of the paper, titled "Engineering a Hyper-catalytic Enzyme by Photoactivated Conformation Modulation," are Christopher Schultz and Sheldon Broedel Jr. of AthenaES, Aristotle Kalivretenos of Aurora Analytics and Brahma Ghosh, an independent consultant. The paper is available here: http://dx.doi.org/10.1021/jz201675m

Funding for this work was provided by Technology Maturation Funds from Battelle Memorial Institute.

UT-Battelle manages ORNL for DOE's Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/

Ron Walli | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>