ORNL neutrons, simulations reveal details of bioenergy barrier

Lignin, a major component of plant cell walls, aggregates to form clumps, which cause problems during the production of cellulosic ethanol. The exact shape and structure of the aggregates, however, have remained largely unknown.

A team led by ORNL's Jeremy Smith revealed the surface structure of lignin aggregates down to 1 angstrom—the equivalent of a 10 billionth of a meter or smaller than the width of a carbon atom. The team's findings were published in Physical Review E.

“We've combined neutron scattering experiments with large-scale simulations on ORNL's main supercomputer to reveal that pretreated softwood lignin aggregates are characterized by a highly folded surface,” said Smith, who directs ORNL's Center for Molecular Biophysics and holds a Governor's Chair at University of Tennessee.

Lignin clumps can inhibit the conversion of biofuel feedstocks—for example, switchgrass—into ethanol, a renewable substitute for gasoline. When enzymes are used to release plant sugars necessary for ethanol production, the lignin aggregates bind to the enzymes and reduce the efficiency of the conversion.

Lignin's highly folded surface creates more opportunities to capture the passing enzymes than a smooth surface would. An improved understanding of the lignin aggregates will aid scientists in efforts to design a more effective pretreatment process, which in turn could lower the cost of biofuels.

“Nature has evolved a very sophisticated mechanism to protect plants against enzymatic attack,” said ORNL team member Loukas Petridis. “We're trying to understand the physical basis of biomass recalcitrance—resistance of the plants to enzymatic degradation.”

The complementary techniques of simulation on ORNL's Jaguar supercomputer and neutron scattering at the lab's High Flux Isotope Reactor enabled Smith's team to resolve lignin's structure at scales ranging from 1 to 1,000 angstroms. Smith's project is the first to combine the two methods in biofuel research. “This work illustrates how state-of-the-art neutron scattering and high-performance supercomputing can be integrated to reveal structures of importance to the energy biosciences,” Smith said.

The research was supported by DOE's Office of Science and used the resources of the Leadership Computing Facility at ORNL under a DOE INCITE award. Team members include ORNL's Sai Venkatesh Pingali, Volker Urban, William Heller, Hugh O'Neill and Marcus Foston and Arthur Ragauskas from Georgia Institute of Technology.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter – http://twitter.com/oakridgelabnews

RSS Feeds – http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr – http://www.flickr.com/photos/oakridgelab

YouTube – http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn – http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook – http://www.facebook.com/Oak.Ridge.National.Laboratory

Media Contact

Morgan McCorkle EurekAlert!

More Information:

http://www.ornl.gov

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors