Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL neutrons, simulations reveal details of bioenergy barrier

16.06.2011
A first of its kind combination of experiment and simulation at the Department of Energy's Oak Ridge National Laboratory is providing a close-up look at the molecule that complicates next-generation biofuels.

Lignin, a major component of plant cell walls, aggregates to form clumps, which cause problems during the production of cellulosic ethanol. The exact shape and structure of the aggregates, however, have remained largely unknown.

A team led by ORNL's Jeremy Smith revealed the surface structure of lignin aggregates down to 1 angstrom—the equivalent of a 10 billionth of a meter or smaller than the width of a carbon atom. The team's findings were published in Physical Review E.

"We've combined neutron scattering experiments with large-scale simulations on ORNL's main supercomputer to reveal that pretreated softwood lignin aggregates are characterized by a highly folded surface," said Smith, who directs ORNL's Center for Molecular Biophysics and holds a Governor's Chair at University of Tennessee.

Lignin clumps can inhibit the conversion of biofuel feedstocks—for example, switchgrass—into ethanol, a renewable substitute for gasoline. When enzymes are used to release plant sugars necessary for ethanol production, the lignin aggregates bind to the enzymes and reduce the efficiency of the conversion.

Lignin's highly folded surface creates more opportunities to capture the passing enzymes than a smooth surface would. An improved understanding of the lignin aggregates will aid scientists in efforts to design a more effective pretreatment process, which in turn could lower the cost of biofuels.

"Nature has evolved a very sophisticated mechanism to protect plants against enzymatic attack," said ORNL team member Loukas Petridis. "We're trying to understand the physical basis of biomass recalcitrance—resistance of the plants to enzymatic degradation."

The complementary techniques of simulation on ORNL's Jaguar supercomputer and neutron scattering at the lab's High Flux Isotope Reactor enabled Smith's team to resolve lignin's structure at scales ranging from 1 to 1,000 angstroms. Smith's project is the first to combine the two methods in biofuel research. "This work illustrates how state-of-the-art neutron scattering and high-performance supercomputing can be integrated to reveal structures of importance to the energy biosciences," Smith said.

The research was supported by DOE's Office of Science and used the resources of the Leadership Computing Facility at ORNL under a DOE INCITE award. Team members include ORNL's Sai Venkatesh Pingali, Volker Urban, William Heller, Hugh O'Neill and Marcus Foston and Arthur Ragauskas from Georgia Institute of Technology.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews

RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr - http://www.flickr.com/photos/oakridgelab

YouTube - http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Morgan McCorkle | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>