Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ORNL Fundamental Discovery Casts Enzymes in New Light

A tree outside Oak Ridge National Laboratory researcher Pratul Agarwal’s office window provided the inspiration for a discovery that may ultimately lead to drugs with fewer side effects, less expensive biofuels and more.

Just as a breeze causes leaves, branches and ultimately the tree to move, enzymes moving at the molecular level perform hundreds of chemical processes that have a ripple effect necessary for life.

Previously, protein complexes were viewed as static entities with biological function understood in terms of direct interactions, but that isn’t the case. This finding, published today in PLoS Biology, may have enormous implications.

“Our discovery is allowing us to perhaps find the knobs that we can use to improve the catalytic rate of enzymes and perform a host of functions more efficiently,” said Agarwal, a member of the Department of Energy laboratory’s Computer Science and Mathematics Division.

Making this discovery possible was ORNL’s supercomputer, Jaguar, which allowed Agarwal and co-author Arvind Ramanathan to investigate a large number of enzymes at the atomistic scale.

The researchers found that enzymes have similar features that are entirely preserved from the smallest living organism – bacteria -- to complex life forms, including humans.

“If something is important for function, then it will be present in the protein performing the same function across different species,” Agarwal said. “For example, regardless of which company makes a car, they all have wheels and brakes.”

Similarly, scientists have known for decades that certain structural features of the enzyme are also preserved because of their important function. Agarwal and Ramanathan believe the same is true for enzyme flexibility.

“The importance of the structure of enzymes has been known for more than 100 years, but only recently have we started to understand that the internal motions may be the missing piece of the puzzle to understand how enzymes work,” Agarwal said. “If we think of the tree as the model, the protein move at the molecular level with the side-chain and residues being the leaves and the protein backbone being the entire stem.”

This research builds on previous work in which Agarwal identified a network of protein vibrations in the enzyme Cyclphilin A, which is involved in many biological reactions, including AIDS-causing HIV-1.

While Agarwal sees this research perhaps leading to medicines able to target hard to cure diseases such as AIDS, he is also excited about its energy applications, specifically in the area of cellulosic ethanol. Highly efficient enzymes could bring down the cost of biofuels, making them a more attractive option.

Funding for this research was provided by ORNL’s Laboratory Directed Research and Development program. Ramanathan was a graduate student at Carnegie Mellon University when this work began and now also works at ORNL. The paper is titled “Evolutionarily conserved linkage between enzyme fold, flexibility and catalysis.”

UT-Battelle manages ORNL for DOE’s Office of Science.
Caption: This cartoon-like image provides a representation for the internal motions coupled to the catalytic step of the enzyme Cyclophilin A. The substrate bound at the active site is shown in cyan sticks and the highly flexible regions in the enzyme are highlighted in a tube-like representation. The transparent tubes indicate the directionality of the motion. The colors on the tube indicate the extent to which these regions move,

with red and blue regions representing maximum and minimum mobility, respectively. Hydrogen bond interactions from the surface of the enzyme connect all the way to the active site and are indicated as yellow dashes. The interactions and the internal motions in Cyclophilin A are conserved from bacteria to humans.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at Additional information about ORNL is available at the sites below:

Twitter -

RSS Feeds -

Flickr -

YouTube -

LinkedIn -

Facebook -

| Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>