Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL Fundamental Discovery Casts Enzymes in New Light

10.11.2011
A tree outside Oak Ridge National Laboratory researcher Pratul Agarwal’s office window provided the inspiration for a discovery that may ultimately lead to drugs with fewer side effects, less expensive biofuels and more.

Just as a breeze causes leaves, branches and ultimately the tree to move, enzymes moving at the molecular level perform hundreds of chemical processes that have a ripple effect necessary for life.

Previously, protein complexes were viewed as static entities with biological function understood in terms of direct interactions, but that isn’t the case. This finding, published today in PLoS Biology, may have enormous implications.

“Our discovery is allowing us to perhaps find the knobs that we can use to improve the catalytic rate of enzymes and perform a host of functions more efficiently,” said Agarwal, a member of the Department of Energy laboratory’s Computer Science and Mathematics Division.

Making this discovery possible was ORNL’s supercomputer, Jaguar, which allowed Agarwal and co-author Arvind Ramanathan to investigate a large number of enzymes at the atomistic scale.

The researchers found that enzymes have similar features that are entirely preserved from the smallest living organism – bacteria -- to complex life forms, including humans.

“If something is important for function, then it will be present in the protein performing the same function across different species,” Agarwal said. “For example, regardless of which company makes a car, they all have wheels and brakes.”

Similarly, scientists have known for decades that certain structural features of the enzyme are also preserved because of their important function. Agarwal and Ramanathan believe the same is true for enzyme flexibility.

“The importance of the structure of enzymes has been known for more than 100 years, but only recently have we started to understand that the internal motions may be the missing piece of the puzzle to understand how enzymes work,” Agarwal said. “If we think of the tree as the model, the protein move at the molecular level with the side-chain and residues being the leaves and the protein backbone being the entire stem.”

This research builds on previous work in which Agarwal identified a network of protein vibrations in the enzyme Cyclphilin A, which is involved in many biological reactions, including AIDS-causing HIV-1.

While Agarwal sees this research perhaps leading to medicines able to target hard to cure diseases such as AIDS, he is also excited about its energy applications, specifically in the area of cellulosic ethanol. Highly efficient enzymes could bring down the cost of biofuels, making them a more attractive option.

Funding for this research was provided by ORNL’s Laboratory Directed Research and Development program. Ramanathan was a graduate student at Carnegie Mellon University when this work began and now also works at ORNL. The paper is titled “Evolutionarily conserved linkage between enzyme fold, flexibility and catalysis.”

UT-Battelle manages ORNL for DOE’s Office of Science.
Image: http://www.ornl.gov/info/press_releases/photos/striking_image.png
Caption: This cartoon-like image provides a representation for the internal motions coupled to the catalytic step of the enzyme Cyclophilin A. The substrate bound at the active site is shown in cyan sticks and the highly flexible regions in the enzyme are highlighted in a tube-like representation. The transparent tubes indicate the directionality of the motion. The colors on the tube indicate the extent to which these regions move,

with red and blue regions representing maximum and minimum mobility, respectively. Hydrogen bond interactions from the surface of the enzyme connect all the way to the active site and are indicated as yellow dashes. The interactions and the internal motions in Cyclophilin A are conserved from bacteria to humans.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews

RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr - http://www.flickr.com/photos/oakridgelab

YouTube - http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

| Newswise Science News
Further information:
http://www.ornl.gov

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>