Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL Fundamental Discovery Casts Enzymes in New Light

10.11.2011
A tree outside Oak Ridge National Laboratory researcher Pratul Agarwal’s office window provided the inspiration for a discovery that may ultimately lead to drugs with fewer side effects, less expensive biofuels and more.

Just as a breeze causes leaves, branches and ultimately the tree to move, enzymes moving at the molecular level perform hundreds of chemical processes that have a ripple effect necessary for life.

Previously, protein complexes were viewed as static entities with biological function understood in terms of direct interactions, but that isn’t the case. This finding, published today in PLoS Biology, may have enormous implications.

“Our discovery is allowing us to perhaps find the knobs that we can use to improve the catalytic rate of enzymes and perform a host of functions more efficiently,” said Agarwal, a member of the Department of Energy laboratory’s Computer Science and Mathematics Division.

Making this discovery possible was ORNL’s supercomputer, Jaguar, which allowed Agarwal and co-author Arvind Ramanathan to investigate a large number of enzymes at the atomistic scale.

The researchers found that enzymes have similar features that are entirely preserved from the smallest living organism – bacteria -- to complex life forms, including humans.

“If something is important for function, then it will be present in the protein performing the same function across different species,” Agarwal said. “For example, regardless of which company makes a car, they all have wheels and brakes.”

Similarly, scientists have known for decades that certain structural features of the enzyme are also preserved because of their important function. Agarwal and Ramanathan believe the same is true for enzyme flexibility.

“The importance of the structure of enzymes has been known for more than 100 years, but only recently have we started to understand that the internal motions may be the missing piece of the puzzle to understand how enzymes work,” Agarwal said. “If we think of the tree as the model, the protein move at the molecular level with the side-chain and residues being the leaves and the protein backbone being the entire stem.”

This research builds on previous work in which Agarwal identified a network of protein vibrations in the enzyme Cyclphilin A, which is involved in many biological reactions, including AIDS-causing HIV-1.

While Agarwal sees this research perhaps leading to medicines able to target hard to cure diseases such as AIDS, he is also excited about its energy applications, specifically in the area of cellulosic ethanol. Highly efficient enzymes could bring down the cost of biofuels, making them a more attractive option.

Funding for this research was provided by ORNL’s Laboratory Directed Research and Development program. Ramanathan was a graduate student at Carnegie Mellon University when this work began and now also works at ORNL. The paper is titled “Evolutionarily conserved linkage between enzyme fold, flexibility and catalysis.”

UT-Battelle manages ORNL for DOE’s Office of Science.
Image: http://www.ornl.gov/info/press_releases/photos/striking_image.png
Caption: This cartoon-like image provides a representation for the internal motions coupled to the catalytic step of the enzyme Cyclophilin A. The substrate bound at the active site is shown in cyan sticks and the highly flexible regions in the enzyme are highlighted in a tube-like representation. The transparent tubes indicate the directionality of the motion. The colors on the tube indicate the extent to which these regions move,

with red and blue regions representing maximum and minimum mobility, respectively. Hydrogen bond interactions from the surface of the enzyme connect all the way to the active site and are indicated as yellow dashes. The interactions and the internal motions in Cyclophilin A are conserved from bacteria to humans.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews

RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr - http://www.flickr.com/photos/oakridgelab

YouTube - http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

| Newswise Science News
Further information:
http://www.ornl.gov

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>