Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL explores proteins in Yellowstone bacteria for biofuel inspiration

15.02.2012
Studies of bacteria first found in Yellowstone's hot springs are furthering efforts at the Department of Energy's BioEnergy Science Center toward commercially viable ethanol production from crops such as switchgrass.

The current production of ethanol relies on the use of expensive enzymes that break down complex plant materials to yield sugars that are fermented into ethanol. One suggested cheaper alternative is consolidated bioprocessing, a streamlined process that uses microorganisms to break down the resistant biomass.

"Consolidated bioprocessing is like a one-pot mix," said Oak Ridge National Laboratory's Richard Giannone, coauthor on a BESC proteomics study that looked at one microorganism candidate. "You want to throw plant material into a pot with the microorganism and allow it to degrade the material and produce ethanol at the same time."

The BESC study focused on Caldicellulosiruptor obsidiansis, a naturally occurring bacterium discovered by BESC scientists in a Yellowstone National Park hot spring. The microorganism, which thrives at extremely high temperatures, breaks down organic material such as sticks and leaves in its natural environment, and scientists hope to transfer this capability to biofuel production tanks.

In a paper featured on the cover of the Journal of Proteome Research, the BESC team conducted a comparative analysis of proteins from C. obsidiansis grown on four different carbon sources, ranging from a simple sugar to more complex substrates such as pure cellulose and finally to switchgrass. The succession of carbon substrates allowed researchers to compare how the organism processes increasingly complex materials.

"This progression helps us look at how proteins change given different carbon substrates," Giannone said. "One of the goals is to identify new proteins that we haven't seen before. If an unknown protein doesn't show up on the simple sugars or cellulose, but it shows up on the switchgrass, then we can say something about that gene or protein—that it responds to something the switchgrass is providing."

The researchers found that growth on switchgrass prompted the organism to express an expanded set of proteins that deal specifically with the hemicellulose content of the plant, including hemicellulose-targeted glycosidases and extracellular solute-binding proteins. Acting together, these two sub-systems work to break down the plant material and import the resulting sugars into the cell. The scientists went on to show that once inside the cell, the organism "switches on" certain enzymes involved in pentose metabolism in order to further process these hemicellulose-derived sugars into usable energy.

"By comparing how C. obsidiansis reacted to switchgrass, relative to pure cellulose, we were able to pinpoint the specific proteins and enzymes that are important to plant cell wall deconstruction—a major roadblock to the production of advanced biofuels," Giannone said.

The team's measurement of the full complement and abundance of C. obsidiansis proteins, called proteomics, can now be combined with other technologies such as genomics, transcriptomics and metabolomics in order to obtain a 360-degree, system-wide view of the organism. Instead of studying discrete proteins, these systems biology-type approaches provide more thorough insight into the day-to-day operations of bioenergy-relevant organisms and thus better equip researchers to make recommendations about their use in ethanol production.

"One goal for us at the BioEnergy Science Center is to take these 'omic' technologies and integrate the data so we can draw definitive conclusions about a system," Giannone said.

Coauthors on the paper are Hamburg University of Technology's Adriane Lochner and Garabed Antranikian, and ORNL's Martin Keller, David Graham and Robert Hettich. The full publication is available here: http://pubs.acs.org/doi/abs/10.1021/pr200536j.

BESC is one of three DOE Bioenergy Research Centers established by the DOE's Office of Science in 2007. The centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from nonfood plant fiber, cost-effective on a national scale. The three centers are coordinated at ORNL, Lawrence Berkeley National Laboratory and the University of Wisconsin-Madison in partnership with Michigan State University.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Morgan McCorkle | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>