Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ORNL explores proteins in Yellowstone bacteria for biofuel inspiration

15.02.2012
Studies of bacteria first found in Yellowstone's hot springs are furthering efforts at the Department of Energy's BioEnergy Science Center toward commercially viable ethanol production from crops such as switchgrass.

The current production of ethanol relies on the use of expensive enzymes that break down complex plant materials to yield sugars that are fermented into ethanol. One suggested cheaper alternative is consolidated bioprocessing, a streamlined process that uses microorganisms to break down the resistant biomass.

"Consolidated bioprocessing is like a one-pot mix," said Oak Ridge National Laboratory's Richard Giannone, coauthor on a BESC proteomics study that looked at one microorganism candidate. "You want to throw plant material into a pot with the microorganism and allow it to degrade the material and produce ethanol at the same time."

The BESC study focused on Caldicellulosiruptor obsidiansis, a naturally occurring bacterium discovered by BESC scientists in a Yellowstone National Park hot spring. The microorganism, which thrives at extremely high temperatures, breaks down organic material such as sticks and leaves in its natural environment, and scientists hope to transfer this capability to biofuel production tanks.

In a paper featured on the cover of the Journal of Proteome Research, the BESC team conducted a comparative analysis of proteins from C. obsidiansis grown on four different carbon sources, ranging from a simple sugar to more complex substrates such as pure cellulose and finally to switchgrass. The succession of carbon substrates allowed researchers to compare how the organism processes increasingly complex materials.

"This progression helps us look at how proteins change given different carbon substrates," Giannone said. "One of the goals is to identify new proteins that we haven't seen before. If an unknown protein doesn't show up on the simple sugars or cellulose, but it shows up on the switchgrass, then we can say something about that gene or protein—that it responds to something the switchgrass is providing."

The researchers found that growth on switchgrass prompted the organism to express an expanded set of proteins that deal specifically with the hemicellulose content of the plant, including hemicellulose-targeted glycosidases and extracellular solute-binding proteins. Acting together, these two sub-systems work to break down the plant material and import the resulting sugars into the cell. The scientists went on to show that once inside the cell, the organism "switches on" certain enzymes involved in pentose metabolism in order to further process these hemicellulose-derived sugars into usable energy.

"By comparing how C. obsidiansis reacted to switchgrass, relative to pure cellulose, we were able to pinpoint the specific proteins and enzymes that are important to plant cell wall deconstruction—a major roadblock to the production of advanced biofuels," Giannone said.

The team's measurement of the full complement and abundance of C. obsidiansis proteins, called proteomics, can now be combined with other technologies such as genomics, transcriptomics and metabolomics in order to obtain a 360-degree, system-wide view of the organism. Instead of studying discrete proteins, these systems biology-type approaches provide more thorough insight into the day-to-day operations of bioenergy-relevant organisms and thus better equip researchers to make recommendations about their use in ethanol production.

"One goal for us at the BioEnergy Science Center is to take these 'omic' technologies and integrate the data so we can draw definitive conclusions about a system," Giannone said.

Coauthors on the paper are Hamburg University of Technology's Adriane Lochner and Garabed Antranikian, and ORNL's Martin Keller, David Graham and Robert Hettich. The full publication is available here: http://pubs.acs.org/doi/abs/10.1021/pr200536j.

BESC is one of three DOE Bioenergy Research Centers established by the DOE's Office of Science in 2007. The centers support multidisciplinary, multi-institutional research teams pursuing the fundamental scientific breakthroughs needed to make production of cellulosic biofuels, or biofuels from nonfood plant fiber, cost-effective on a national scale. The three centers are coordinated at ORNL, Lawrence Berkeley National Laboratory and the University of Wisconsin-Madison in partnership with Michigan State University.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science. DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov.

Morgan McCorkle | EurekAlert!
Further information:
http://www.ornl.gov

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>