Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The original Twitter? Tiny electronic tags monitor birds’ social networks

21.09.2012
If two birds meet deep in the forest, does anybody hear? Until now, nobody did, unless an intrepid biologist was hiding underneath a bush and watching their behavior, or the birds happened to meet near a research monitoring station. But an electronic tag designed at the University of Washington can for the first time see when birds meet in the wild.
A new study led by a biologist at Scotland’s University of St. Andrews used the UW tags to see whether crows might learn to use tools from one another. The findings, published last week in Current Biology, supported the theory by showing an unexpected amount of social mobility, with the crows often spending time near birds outside their immediate family.

The study looked at crows in New Caledonia, an archipelago of islands in the South Pacific. The crows are famous for using different tools to extract prey from deadwood and vegetation. Biologists wondered whether the birds might learn by watching each other.

The results, as reported by St. Andrews, revealed “a surprising number of contacts” between non-related crows. During one week, the technology recorded more than 28,000 interactions among 34 crows. While core family units of New Caledonian crows contain only three members, the study found all the birds were connected to the larger social network.

The new paper is the first published study using the UW tags to record animal social interactions.

“This is a new type of animal-tracking technology,” said co-author Brian Otis, a UW associate professor of electrical engineering whose lab developed the tags. “Ecology is just one of the many fields that will be transformed with miniaturized, low-power wireless sensors.”

Biologists normally tag animals with radio transmitters that broadcast at a particular frequency, and field researchers use a receiver to listen for that frequency and detect when the animal is present. An encounter between small animals would only be recorded if the researcher was nearby.

The UW system, called Encounternet, uses programmable digital tags that can send and receive pulses.

“Encounternet tags can monitor each other, so you can use them to study interactions among animals,” said co-author John Burt, a UW affiliate professor of electrical engineering. “You can’t even start to do that with other radio-tracking technology.”

Other research groups are using the UW tags around the world. Researchers at the University of Windsor in Canada are using them to study mating behavior in Costa Rican long-tailed manikins; a researcher at Drexel University is using them to study the interaction between birds and army ants in Costa Rica; German researchers are putting the tags on sea lions in the Galapagos Islands to study their behavior as they pull up on beaches; and researchers in the Netherlands are studying the social behavior of great tits, a small woodland bird.

“It’s a big topic right now, the idea that animals have social networks,” Burt said. He has been working with field biologists for the last three years to deploy the tags.

“There are other tags that can do proximity logging, but they’re all very big and for larger animals. None is as small as Encounternet – or even near to it.”

The smallest of the UW tags weighs less than 1 gram (0.035 ounces) and can be used on animals as light as 20 grams (less than an ounce), about the weight of a sparrow. Researchers attach the tags to birds with straps that degrade and harmlessly fall off after the battery dies. The tag records nearby pulses, and the signal strength gives an estimate of the other animal’s distance.

A typical study using the system includes a few dozen tags and between 10 and 100 fixed base stations. When tagged animals pass a base station the data is transmitted wirelessly from the tag to the base station, and from there to the Internet. Researchers can also reprogram the tags remotely – for example, they can look at initial results to see when there are few encounters happening, and turn the battery off during those times to conserve power.

Burt completed his doctorate at the UW in 2000, with a dissertation on birdsong communication and learning. He wished that there was a way to automatically monitor bird interactions in the wild, and in 2005 joined forces with Otis, an expert in small, lightweight, low-power electronics. Burt managed the project to develop the tags, with funding from the National Science Foundation, as a research scientist in Otis’ group.

This fall they founded Encounternet LLC in Portland, Ore., where Burt now lives. He is working to add a GPS component to record the location of encounters, and to add an accelerometer and other sensors that could detect an animal’s behavior.

“People are excited about this because for the first time, it allows them to study smaller animal interactions and social networks on an incredibly fine scale,” Burt said. “Social networks are turning out to be key to understanding many animal behaviors. People say Encounternet is the only thing they can find that can collect that information.”

For more information, contact Otis at botis@uw.edu or 206-427-5061 and Burt at quill65@gmail.com or 206-214-8849. Otis is on leave in California this year and best reached via e-mail.

St. Andrews news release on the Current Biology study:
http://www.st-andrews.ac.uk/news/archive/2012/Title,91404,en.html

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu
http://www.washington.edu/news/2012/09/20/the-original-twitter-tiny-electronic-tags-monitor-birds-social-networks/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>