Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Origin of the unique ventilatory apparatus of turtles


How the tortoise's ribs got embedded in its shell

Through the careful study of modern and early fossil tortoise, researchers now have a better understanding of how tortoises breathe and the evolutionary processes that helped shape their unique breathing apparatus and tortoise shell.

A Computed Tomography rendering of a snapping turtle (Chelydra serpentina) showing the skeleton (white), lungs (blue), and abdominal muscles (red and pink) used to ventilate the lungs. Because turtles have locked their ribs up into the iconic turtle shell, they can no longer use their ribs to breathe as in most other animals and instead have developed a unique abdominal muscle based system.

Credit: Emma R. Schachner

The findings published in a paper, titled: Origin of the unique ventilatory apparatus of turtles, in the scientific journal, Nature Communications, on Friday, 7 November 2014, help determine when and how the unique breathing apparatus of tortoises evolved.

Lead author Dr Tyler Lyson of Wits University's Evolutionary Studies Institute, the Smithsonian Institution and the Denver Museum of Nature and Science said: "Tortoises have a bizarre body plan and one of the more puzzling aspects to this body plan is the fact that tortoises have locked their ribs up into the iconic tortoise shell. No other animal does this and the likely reason is that ribs play such an important role in breathing in most animals including mammals, birds, crocodilians, and lizards."

Instead tortoises have developed a unique abdominal muscular sling that wraps around their lungs and organs to help them breathe. When and how this mechanism evolved has been unknown.

"It seemed pretty clear that the tortoise shell and breathing mechanism evolved in tandem, but which happened first? It's a bit of the chicken or the egg causality dilemma," Lyson said. By studying the anatomy and thin sections (also known as histology), Lyson and his colleagues have shown that the modern tortoise breathing apparatus was already in place in the earliest fossil tortoise, an animal known as Eunotosaurus africanus.

This animal lived in South Africa 260 million years ago and shares many unique features with modern day tortoises, but lacked a shell. A recognisable tortoise shell does not appear for another 50 million years.

Lyson said Eunotosaurus bridges the morphological gap between the early reptile body plan and the highly modified body plan of living tortoises, making it the Archaeopteryx of turtles.

"Named in 1892, Eunotosaurus is one of the earliest tortoise ancestors and is known from early rocks near Beaufort West," said Professor Bruce Rubidge, Director of the Evolutionary Studies Institute at Wits University and co-author of the paper.

"There are some 50 specimen of Eunotosaurus. The rocks of the Karoo are remarkable in the diversity of fossils of early tortoises they have produced. The fact that we find Eunotosaurus at the base of the Karoo succession strongly suggest that there are more ancestral forms of tortoises still to be discovered in the Karoo," Rubidge added.

The study suggests that early in the evolution of the tortoise body plan a gradual increase in body wall rigidity produced a division of function between the ribs and abdominal respiratory muscles. As the ribs broadened and stiffened the torso, they became less effective for breathing which caused the abdominal muscles to become specialised for breathing, which in turn freed up the ribs to eventually - approximately 50 million years later - to become fully integrated into the characteristic tortoise shell.

Lyson and his colleagues now plan to investigate reasons why the ribs of early tortoises starting to broaden in the first place. "Broadened ribs are the first step in the general increase in body wall rigidity of early basal tortoises, which ultimately leads to both the evolution of the tortoise shell and this unique way of breathing. We plan to study this key aspect to get a better understanding why the ribs started to broaden."

Media enquiries:

Professor Bruce Rubidge is currently undertaking field work in the Karoo. He has intermittent communication access and can be reached on

Dr Tyler Lyson is in Germany and can only be reached on

For images and a copy of the paper, kindly contact Erna van Wyk, Multimedia Communications Officer, University of the Witwatersrand on

Erna van Wyk | EurekAlert!

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>