Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New origin found for a critical immune response

03.03.2009
An immune system response that is critical to the first stages of fighting off viruses and harmful bacteria comes from an entirely different direction than most scientists had thought, according to a finding by researchers at the Duke University Medical Center.

"This finding will have important implications in vaccine science and autoimmune disease therapy development," said Michael Gunn, M.D., an immunologist and cardiologist at Duke and senior author of the study published in Nature Immunology.

Type 1 helper (TH1) T cell immune responses are critical for the control of viruses and certain bacteria. Immunologists have generally believed that TH1 responses are induced by rare immune cells, called dendritic cells. When activated by infection or vaccination, the dendritic cells were thought to move from peripheral tissues into lymph nodes to stimulate T cell responses.

The Duke researchers found, however, that the dendritic cells that stimulate TH1 responses didn't come from peripheral tissues, but rather arose from monocytes, a common cell type in the blood, that moved directly into lymph nodes after infection.

"The result speaks to the most basic principles of immune response to pathogens," Gunn said. "It may also explain the poor results we have seen in attempts to develop effective dendritic-cell vaccines."

Gunn previously had identified a particular protein, known as a chemokine, that stimulates the migration of activated dendritic cells from peripheral tissues to lymph nodes. The Duke researchers generated a TH1 response in laboratory mice that lacked this chemokine with influenza viruses.

"We really thought the mice would not be able to generate much of an immune response at all," Gunn said, because they wouldn't be able to mobilize dendritic cells. "The mice, however, had increased TH1 responses. We knew we had to find what was really causing the response."

One scientist who knew about these findings told Gunn the Duke group would "never figure this out" because their findings were so unconventional.

To solve the mystery, the Duke team studied several different types of mice, which were missing other chemokines or chemokine receptors. They found that mice without the Ccr2 chemokine receptor that controls the migration of inflammatory monocytes had much lower accumulation of monocyte-derived dendritic cells and TH1 responses.

The scientists concluded that there is a blood-derived lymph node dendritic cell type that has a key role in developing acute T-cell responses. "For so long, dendritic cells from tissues were the obvious answer," Gunn said. "We found out that that's not always the case."

The team now plans to look at the blood-derived dendritic cells under different conditions to see if they may have other activities. "We observed the activity of these cells after TH1-inducing stimuli, like influenza," Gunn said. "Next we'd like to study other types of immune stimuli to see how the cells respond."

Understanding how dendritic cells stimulate different types of immune response would open the door to enhancing or inhibiting these responses, a major goal of immunologists trying to prevent infections or control autoimmune disease, Gunn said.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>