Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New origin found for a critical immune response

03.03.2009
An immune system response that is critical to the first stages of fighting off viruses and harmful bacteria comes from an entirely different direction than most scientists had thought, according to a finding by researchers at the Duke University Medical Center.

"This finding will have important implications in vaccine science and autoimmune disease therapy development," said Michael Gunn, M.D., an immunologist and cardiologist at Duke and senior author of the study published in Nature Immunology.

Type 1 helper (TH1) T cell immune responses are critical for the control of viruses and certain bacteria. Immunologists have generally believed that TH1 responses are induced by rare immune cells, called dendritic cells. When activated by infection or vaccination, the dendritic cells were thought to move from peripheral tissues into lymph nodes to stimulate T cell responses.

The Duke researchers found, however, that the dendritic cells that stimulate TH1 responses didn't come from peripheral tissues, but rather arose from monocytes, a common cell type in the blood, that moved directly into lymph nodes after infection.

"The result speaks to the most basic principles of immune response to pathogens," Gunn said. "It may also explain the poor results we have seen in attempts to develop effective dendritic-cell vaccines."

Gunn previously had identified a particular protein, known as a chemokine, that stimulates the migration of activated dendritic cells from peripheral tissues to lymph nodes. The Duke researchers generated a TH1 response in laboratory mice that lacked this chemokine with influenza viruses.

"We really thought the mice would not be able to generate much of an immune response at all," Gunn said, because they wouldn't be able to mobilize dendritic cells. "The mice, however, had increased TH1 responses. We knew we had to find what was really causing the response."

One scientist who knew about these findings told Gunn the Duke group would "never figure this out" because their findings were so unconventional.

To solve the mystery, the Duke team studied several different types of mice, which were missing other chemokines or chemokine receptors. They found that mice without the Ccr2 chemokine receptor that controls the migration of inflammatory monocytes had much lower accumulation of monocyte-derived dendritic cells and TH1 responses.

The scientists concluded that there is a blood-derived lymph node dendritic cell type that has a key role in developing acute T-cell responses. "For so long, dendritic cells from tissues were the obvious answer," Gunn said. "We found out that that's not always the case."

The team now plans to look at the blood-derived dendritic cells under different conditions to see if they may have other activities. "We observed the activity of these cells after TH1-inducing stimuli, like influenza," Gunn said. "Next we'd like to study other types of immune stimuli to see how the cells respond."

Understanding how dendritic cells stimulate different types of immune response would open the door to enhancing or inhibiting these responses, a major goal of immunologists trying to prevent infections or control autoimmune disease, Gunn said.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>