Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orientation of antenna protein in photosynthetic bacteria described

06.04.2009
'Taco shell' protein

Researchers at Washington University in St. Louis have figured out the orientation of a protein in the antenna complex to its neighboring membrane in a photosynthetic bacterium, a key find in the process of energy transfer in photosynthesis.

Robert Blankenship, Ph.D., Markey Distinguished Professor of biology and chemistry in Arts & Sciences, led a team that for the first time combined chemical labeling with mass spectroscopy to verify the orientation. The team also included Michael Gross, Ph.D., Washington University professor of chemistry, immunology and medicine, and chemistry graduate students Jianzhong Wen and Hao Zhang. A paper describing this work appeared recently in the Proceedings of the National Academy of Sciences USA.

In green sulfur bacteria, which live in extremely dim environments with scarce visible light, the membrane-attached Fenna-Matthews-Olson (FMO) antenna protein serves as a sort of wire connecting the large peripheral chlorosome antenna complex with the organism's reaction center. These bacteria are related to extreme heat-loving bacteria that live at thermal vents on the ocean floor. Their antenna systems are much larger and more pronounced than those of other bacteria to take advantage of whatever geothermal light they can harvest.

Blankenship fondly refers to the FMO protein as the taco shell protein because of its structure: its ribbon-like backbone wraps around three clusters of seven chlorophylls, just like a taco shell around ground beef. The structure also is referred to as trimeric because of the three clusters.

The taco shell is a sort of "middleman" in the antenna system, sandwiched in between a larger antenna and a complex called the reaction center, where all the electron transfer chemistry takes place. Most of the absorption of light is carried out by a complex called the chlorosome that then transfers the energy to the trimeric protein that in turn transfers to the reaction center.

Photosynthesis transforms light, carbon dioxide and water into chemical energy in plants and some bacteria. The wavelike characteristic of this energy transfer process can explain its extreme efficiency, in that vast areas of phase space can be sampled effectively to find the most efficient path for energy transfer. "We used a combination of tried and true methods, but two that hadn't been used together in the past," said Blankenship. "The surface of the protein has various amino acid residues, and some of those are reactive to the chemical probe we added into the system. The surface residues that react to the probe are then labeled, and we isolate the protein and characterize where the label is in the protein by using mass spectroscopy. That's a kind of footprinting analysis.'

This allowed the researchers to determine how the protein is oriented on the membrane. The footprinting revealed that the energy will flow from the outer part of the antenna, through the mid-part and into the membrane where the reaction center is located.

"The bacteria use the energy of the pigments as a kind of ladder," he said. "As it goes on this ladder, it goes to lower and lower energy states and is guided down to the lowest energy state. That's the funneling effect – the physical guiding of the energy to the reaction center. By knowing exactly how this orientation is on the membrane, we determined the funneling property in a more precise ways."

The biochemical aspects of the project were done in the Blankenship lab, while the mass spectrometry analysis was done in the Washington University NIH Mass Spectrometry Resource Facility that is directed by Gross.

The trimeric protein – the taco shell protein – has a symmetry axis down the middle. The protein lays on the membrane with the symmetry axis perpendicular to the membrane. The combination of labeling and mass spectroscopy enabled the researchers to determine which side of the protein was up, which down.

"It turns out that the side that is down is the one that has the pigment with the lowest energy, which is exactly what you want to facilitate the energy transfer,' Blankenship said. "That's what you would imagine if you designed it yourself."

Robert Blankenship | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>