Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better Organic Electronics

21.03.2012
Berkeley Lab Researchers Show the Way Forward for Improving Organic and Molecular Electronic Devices

Future prospects for superior new organic electronic devices are brighter now thanks to a new study by researchers with the U.S. Department of Energy (DOE)’s Lawrence Berkeley National Laboratory (Berkeley Lab).

Working at the Lab’s Molecular Foundry, a DOE nanoscience center, the team has provided the first experimental determination of the pathways by which electrical charge is transported from molecule-to-molecule in an organic thin film. Their results also show how such organic films can be chemically modified to improve conductance.

“We have shown that when the molecules in organic thin films are aligned in particular directions, there is much better conductance,” says Miquel Salmeron, a leading authority on nanoscale surface imaging who directs Berkeley Lab’s Materials Sciences Division and who led this study. “Chemists already know how to fabricate organic thin films in a way that can achieve such an alignment, which means they should be able to use the information provided by our methodology to determine the molecular alignment and its role on charge transport across and along the molecules. This will help improve the performances of future organic electronic devices.”

Salmeron and Shaul Aloni, also of the Materials Sciences Division, are the corresponding authors of a paper in the journal NanoLetters that describes this work. The paper is titled “Electron Microscopy Reveals Structure and Morphology of One Molecule Thin Organic Films.” Other co-authors were Virginia Altoe, Florent Martin and Allard Katan.

Organic electronics, also known as plastic or polymer electronics, are devices that utilize carbon-based molecules as conductors rather than metals or semiconductors. They are prized for their low costs, light weight and rubbery flexibility. Organic electronics are also expected to play a big role in molecular computing, but to date their use has been hampered by low electrical conductance in comparison to metals and semiconductors.
“Chemists and engineers have been using their intuition and trial-and-error testing to make progress in the field but at some point you hit a wall unless you understand what is going on at the molecular level, for example, how electrons or holes flow through or across molecules, how the charge transport depends on the structure of the organic layers and the orientation of the molecules, and how the charge transport responds to mechanical forces and chemical inputs,” Salmeron says. “With our experimental results, we have shown that we can now provide answers for these questions.”

In this study, Salmeron and his colleagues used electron diffraction patterns to map the crystal structures of molecular films made from monolayers of short versions of commonly used polymers containing long chains of thiophene units. They focused specifically on pentathiophene butyric acid (5TBA) and two of its derivatives (D5TBA and DH5TBA) that were induced to self-assemble on various electron-transparent substrates. Pentathiophenes – molecules containing a ring of four carbon and one sulfur atoms – are members of a well-studied and promising family of organic semiconductors.

Obtaining structural crystallographic maps of monolayer organic films using electron beams posed a major challenge, as Aloni explains.

“These organic molecules are extremely sensitive to high energy electrons,” he says. “When you shoot a beam of high energy electrons through the film it immediately affects the molecules. Within few seconds we no longer see the signature intermolecular alignment of the diffraction pattern. Despite this, when applied correctly, electron microscopy becomes essential tool that can provide unique information on organic samples.”

Salmeron, Aloni and their colleagues overcame the challenge through the combination of a unique strategy they developed and a transmission electron microscope (TEM) at the Molecular Foundry’s Imaging and Manipulation of Nanostructures Facility. Electron diffraction patterns were collected as a parallel electron beam was scanned over the film, then analyzed by computer to generate structural crystallographic maps.

Electron diffraction patterns provide a wealth of information about the morphology, structure, and quality of monolayer organic thin films. (Image from Berkeley Lab’s Molecular Foundry)

“These maps contain uncompromised information of the size, symmetry and orientation of the unit cell, the orientation and structure of the domains, the degree of crystallinity, and any variations on the micrometer scale,” says first author Altoe. “Such data are crucial to understanding the structure and electrical transport properties of the organic films, and allow us to track small changes driven by chemical modifications of the support films.”

In their paper, the authors acknowledge that to gain structural information they had to sacrifice some resolution.

“The achievable resolution of the structural map is a compromise between sample radiation hardness, detector sensitivity and noise, and data acquisition rate,” Salmeron says. “To keep the dose of high energy electrons at a level the monolayer film could support and still be able to collect valuable information about its structure, we had to spread the beam to a 90 nanometer diameter. However a fast and direct control of the beam position combined with the use of fast and ultrasensitive detectors should allow for the use of smaller beams with a higher electron flux, resulting in a better than 10 nanometer resolution.”

While the combination of organic molecular films and substrates in this study conduct electrical current via electron holes (positively-charged energy spaces), Salmeron and his colleagues say their structural mapping can also be applied to materials whose conductance is electron-based.

“We expect our methodology to have widespread applications in materials research,” Salmeron says.

Aloni and Altoe say this methodology is now available at the Imaging and Manipulation of Nanostructures Facility for users of the Molecular Foundry.

This research was supported by the DOE Office of Science.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

The Molecular Foundry is one of five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories. For more information about the DOE NSRCs, please visit http://science.energy.gov.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>