Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organic carbon suggests Swedish lakes were less acidified

01.08.2011
Studies of the probable role of organic acids in lakes indicate that power plant emissions may have had a smaller impact on lake acidity than previously assessed

During the 1970s and 1980s, researchers and policymakers became increasingly worried about multiple consequences of acidic emissions of sulfur dioxide and nitrogen oxides from the stacks of power stations, and eventually they were controlled. In Europe, there was much concern about the effects on Sweden's many lakes, which were found to be in some cases strikingly acidic. The Swedish government instituted a program of countering the acidification by adding thousands of tonnes of lime to the lakes.

The link between emissions and acidification of lakes was never universally accepted, however. A new study of the role of dissolved organic carbon, which comes from living organisms and can also make lakes acidic, suggests that power station emissions may have played less of a role than previously thought. Martin Erlandsson of the University of Reading, United Kingdom, and his colleagues wondered whether it was possible to distinguish the historical effects of organic acids and power station emissions by assessing findings during the 20 years since lake acidification started to decrease in Sweden. They describe their results in the August issue of BioScience.

Although there are few measurements of the amount of dissolved organic carbon in Swedish lakes before the 1980s, the amount of dissolved organic carbon in them has continued to increase despite the stabilization of power station emissions around 1990. The reason is unknown, but the increase supports the idea that as power station emissions increased during the 20th century they may have partly suppressed organic acidity in lakes that was present in pre-industrial times—at higher levels than when it was assessed in 1990. Erlandsson and colleagues estimated the pre-industrial acidity of 66 lakes under different assumptions about the amount of dissolved organic carbon in them, and found that the assumptions had a large effect on estimates of how much the lakes had been affected by power station emissions. Studies of sediments in some of the lakes seem to bear out the idea that preindustrial organic carbon levels were at least as high as they are today—and considerably higher than they were in 1990. That in turn means the power station emissions did not contribute as much to lake acidification as was thought when liming programs were instigated.

Erlandsson and his coauthors say their work does not call into question the value of reducing power station emissions generally, since this has had many other benefits besides improving the condition of lakes. But they comment that their work does emphasize the importance of getting a better understanding of the amounts of dissolved organic carbon in lakes in pre-industrial times, because they have a large influence on the degree of acidification that can be blamed on power station emissions.

After noon EDT on 1 August and for the remainder of the month, the full text of the article will be available for free download through the copy of this Press Release available at www.aibs.org/bioscience-press-releases/.

BioScience, published monthly, is the journal of the American Institute of Biological Sciences (AIBS). BioScience publishes commentary and peer-reviewed articles covering a wide range of biological fields, with a focus on "Organisms from Molecules to the Environment." The journal has been published since 1964. AIBS is an umbrella organization for professional scientific societies and organizations that are involved with biology. It represents some 200 member societies and organizations with a combined membership of about 250,000.

The complete list of peer-reviewed articles in the August 2011 issue of BioScience is as follows:

Mitochondria and the Rise of Eukaryotes by Mark van der Giezen

Empirical Critical Loads of Atmospheric Nitrogen Deposition for Nutrient Enrichment and Acidification of Sensitive US Lakes by Jill S. Baron, Charles T. Driscoll, John L. Stoddard, and Eric E. Richer

Increasing Dissolved Organic Carbon Redefines the Extent of Surface Water Acidification and Helps Resolve a Classic Controversy by Martin Erlandsson, Neil Cory, Jens Fölster, Stephan Köhler, Hjalmar Laudon, Gesa A. Weyhenmeyer, and Kevin Bishop

Biology Needs a Modern Assessment System for Professional Productivity by Lucinda A. McDade, David R. Maddison, Robert Guralnick, Heather A. Piwowar, Mary Liz Jameson, Kristofer M. Helgen, Patrick S. Herendeen, Andrew Hill, and Morgan L. Vis

Empowering Citizen Scientists: The Strength of Many in Monitoring Biologically Active Environmental Contaminants by Alan S. Kolok, Heiko L. Schoenfuss, Catherine R. Propper, and Timothy L. Vail

Integrating Ecological and Socioeconomic Monitoring of Working Forests by Rachel A. Neugarten, Steven A. Wolf, Richard C. Stedman, and Timothy H. Tear

Tim Beardsley | EurekAlert!
Further information:
http://www.aibs.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>