Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oregon study details brain pathways linking visual function, running

17.07.2014

Findings, in mice, fuel the idea that processes of active movement and sensory processing are connected

A new study by researchers at the University of Oregon published today in the journal Neuron describes a brainstem circuit in mice that may help explain how active movement impacts the way the brain processes sensory information.


Christopher Niell, a biologist and member of the University of Oregon's Institute of Neuroscience, directed a team that provided new details in the journal Neuron about a brainstem circuit in mice that may help explain how active movement impacts the way the brain processes sensory information.

Credit: University of Oregon

"Previous studies have examined changes in the visual cortex of mice during running. What was unknown was how do running and vision get linked together in the first place?" said Cristopher Niell, a biology professor in the Institute of Neuroscience and the senior author on the paper "Identification of a Brainstem Circuit Regulating Visual Cortical State in Parallel with Locomotion."

The "aha moment" that inspired the study came five years ago when Niell, as a postdoctoral fellow in Michael Stryker's lab at the University of California, San Francisco, was examining visual perception in mice. He observed that running appeared to be changing how neurons in the brain were firing.

"We found that running turned up the magnitude in the mouse's visual cortex by about two-fold — the signals were basically twice as strong when the mouse was running," Niell said.

This initial finding, demonstrating a mind-body connection in the mouse visual system, was published in Neuron in 2010. Following up on this finding, Niell's team sought to identify neural circuits that could link movement and vision together.

The researchers focused on the brain's mesencephalic locomotor region (MLR), which has been shown to mediate running and other forms of activity in many species. They hypothesized that neural pathways originating in the MLR could serve a dual role – sending a signal down to the spinal cord to initiate locomotion, and another up to the cortex to turn up the visual response.

Using optogenetic methods, the team created genetically sensitized neurons in the MLR region of the mouse brain that could be activated by light. The team then recorded the resulting increased visual responses in the cortex. Their results demonstrated that the MLR can indeed lead to both running and increased responsiveness in the cortex, and that these two effects could be dissociated, showing that they are conveyed via separate pathways.

Next, researchers activated the terminals of the neurons' axons in the basal forebrain, a region that sends neuromodulatory projections to the visual cortex. Stimulation here also induced changes in the cortex, but without the intermediary step of running. Interestingly, the basal forebrain is known to use the neuromodulator acetycholine, which is often associated with alertness and attention.

It is unclear whether humans experience heightened visual perception while running, but the study adds to growing evidence that the processes governing active movement and sensory processing in the brain are tightly connected. Similar regions have been targeted in humans for therapeutic deep-brain stimulation to treat motor dysfunction in patients with Parkinson's disease. Activating this circuit might also provide a means to enhance neuroplasticity, the brain's capacity to rewire itself.

Niell's team included Moses Lee, a visiting scholar at the UO and student in the M.D.-Ph.D. program at UC-San Francisco, who served as the lead author on the paper. "While it seems that moving and sensing are two independent processes, a lot of new research suggests that they are deeply coupled," Lee said. "My hope is that our study can help solidify our understanding of how the brain functions differently in 'alert' states."

###

Other authors were Jennifer Hoy of the UO, Antonello Bonci of the National Institute of Drug Abuse and Johns Hopkins School of Medicine, Linda Wilbrecht of the UC-Berkeley, and Stryker. Research in the Niell lab at the UO was conducted over the past three years with funding from the National Institutes of Health. NIH grants supporting the research were 1R01EY023337 to Niell, 1R01EY02874 to Stryker and 1RC2NS069350 and 1R01MH087542 to Wilbrecht.

About the University of Oregon
The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Media Contacts: Lewis Taylor, lewist@uoregon.edu, 541-346-2816, or Jim Barlow, jebarlow@uoregon.edu, 541-346-3481

Source: Cristopher Niell, assistant professor, Department of Biology, 541-346-8598, cniell@uoregon.edu

Links:

Niell faculty page: http://uoneuro.uoregon.edu/ionmain/htdocs/faculty/niell.html

Institute of Neuroscience: http://uoneuro.uoregon.edu/ionmain/htdocs/index.html

Department of Biology: http://biology.uoregon.edu/

University of Oregon: http://uoregon.edu/

Like UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

Follow UO Science on Twitter: https://twitter.com/UO_Research

Note: The University of Oregon is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. In addition, there is video access to satellite uplink, and audio access to an ISDN codec for broadcast-quality radio interviews.

Lewis Taylor | Eurek Alert!

Further reports about: Biology Neuron Neuroscience Science circuit movement neural neurons pathways processes sensory

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>