Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oregon study details brain pathways linking visual function, running

17.07.2014

Findings, in mice, fuel the idea that processes of active movement and sensory processing are connected

A new study by researchers at the University of Oregon published today in the journal Neuron describes a brainstem circuit in mice that may help explain how active movement impacts the way the brain processes sensory information.


Christopher Niell, a biologist and member of the University of Oregon's Institute of Neuroscience, directed a team that provided new details in the journal Neuron about a brainstem circuit in mice that may help explain how active movement impacts the way the brain processes sensory information.

Credit: University of Oregon

"Previous studies have examined changes in the visual cortex of mice during running. What was unknown was how do running and vision get linked together in the first place?" said Cristopher Niell, a biology professor in the Institute of Neuroscience and the senior author on the paper "Identification of a Brainstem Circuit Regulating Visual Cortical State in Parallel with Locomotion."

The "aha moment" that inspired the study came five years ago when Niell, as a postdoctoral fellow in Michael Stryker's lab at the University of California, San Francisco, was examining visual perception in mice. He observed that running appeared to be changing how neurons in the brain were firing.

"We found that running turned up the magnitude in the mouse's visual cortex by about two-fold — the signals were basically twice as strong when the mouse was running," Niell said.

This initial finding, demonstrating a mind-body connection in the mouse visual system, was published in Neuron in 2010. Following up on this finding, Niell's team sought to identify neural circuits that could link movement and vision together.

The researchers focused on the brain's mesencephalic locomotor region (MLR), which has been shown to mediate running and other forms of activity in many species. They hypothesized that neural pathways originating in the MLR could serve a dual role – sending a signal down to the spinal cord to initiate locomotion, and another up to the cortex to turn up the visual response.

Using optogenetic methods, the team created genetically sensitized neurons in the MLR region of the mouse brain that could be activated by light. The team then recorded the resulting increased visual responses in the cortex. Their results demonstrated that the MLR can indeed lead to both running and increased responsiveness in the cortex, and that these two effects could be dissociated, showing that they are conveyed via separate pathways.

Next, researchers activated the terminals of the neurons' axons in the basal forebrain, a region that sends neuromodulatory projections to the visual cortex. Stimulation here also induced changes in the cortex, but without the intermediary step of running. Interestingly, the basal forebrain is known to use the neuromodulator acetycholine, which is often associated with alertness and attention.

It is unclear whether humans experience heightened visual perception while running, but the study adds to growing evidence that the processes governing active movement and sensory processing in the brain are tightly connected. Similar regions have been targeted in humans for therapeutic deep-brain stimulation to treat motor dysfunction in patients with Parkinson's disease. Activating this circuit might also provide a means to enhance neuroplasticity, the brain's capacity to rewire itself.

Niell's team included Moses Lee, a visiting scholar at the UO and student in the M.D.-Ph.D. program at UC-San Francisco, who served as the lead author on the paper. "While it seems that moving and sensing are two independent processes, a lot of new research suggests that they are deeply coupled," Lee said. "My hope is that our study can help solidify our understanding of how the brain functions differently in 'alert' states."

###

Other authors were Jennifer Hoy of the UO, Antonello Bonci of the National Institute of Drug Abuse and Johns Hopkins School of Medicine, Linda Wilbrecht of the UC-Berkeley, and Stryker. Research in the Niell lab at the UO was conducted over the past three years with funding from the National Institutes of Health. NIH grants supporting the research were 1R01EY023337 to Niell, 1R01EY02874 to Stryker and 1RC2NS069350 and 1R01MH087542 to Wilbrecht.

About the University of Oregon
The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Media Contacts: Lewis Taylor, lewist@uoregon.edu, 541-346-2816, or Jim Barlow, jebarlow@uoregon.edu, 541-346-3481

Source: Cristopher Niell, assistant professor, Department of Biology, 541-346-8598, cniell@uoregon.edu

Links:

Niell faculty page: http://uoneuro.uoregon.edu/ionmain/htdocs/faculty/niell.html

Institute of Neuroscience: http://uoneuro.uoregon.edu/ionmain/htdocs/index.html

Department of Biology: http://biology.uoregon.edu/

University of Oregon: http://uoregon.edu/

Like UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

Follow UO Science on Twitter: https://twitter.com/UO_Research

Note: The University of Oregon is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. In addition, there is video access to satellite uplink, and audio access to an ISDN codec for broadcast-quality radio interviews.

Lewis Taylor | Eurek Alert!

Further reports about: Biology Neuron Neuroscience Science circuit movement neural neurons pathways processes sensory

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>