Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oregon study details brain pathways linking visual function, running

17.07.2014

Findings, in mice, fuel the idea that processes of active movement and sensory processing are connected

A new study by researchers at the University of Oregon published today in the journal Neuron describes a brainstem circuit in mice that may help explain how active movement impacts the way the brain processes sensory information.


Christopher Niell, a biologist and member of the University of Oregon's Institute of Neuroscience, directed a team that provided new details in the journal Neuron about a brainstem circuit in mice that may help explain how active movement impacts the way the brain processes sensory information.

Credit: University of Oregon

"Previous studies have examined changes in the visual cortex of mice during running. What was unknown was how do running and vision get linked together in the first place?" said Cristopher Niell, a biology professor in the Institute of Neuroscience and the senior author on the paper "Identification of a Brainstem Circuit Regulating Visual Cortical State in Parallel with Locomotion."

The "aha moment" that inspired the study came five years ago when Niell, as a postdoctoral fellow in Michael Stryker's lab at the University of California, San Francisco, was examining visual perception in mice. He observed that running appeared to be changing how neurons in the brain were firing.

"We found that running turned up the magnitude in the mouse's visual cortex by about two-fold — the signals were basically twice as strong when the mouse was running," Niell said.

This initial finding, demonstrating a mind-body connection in the mouse visual system, was published in Neuron in 2010. Following up on this finding, Niell's team sought to identify neural circuits that could link movement and vision together.

The researchers focused on the brain's mesencephalic locomotor region (MLR), which has been shown to mediate running and other forms of activity in many species. They hypothesized that neural pathways originating in the MLR could serve a dual role – sending a signal down to the spinal cord to initiate locomotion, and another up to the cortex to turn up the visual response.

Using optogenetic methods, the team created genetically sensitized neurons in the MLR region of the mouse brain that could be activated by light. The team then recorded the resulting increased visual responses in the cortex. Their results demonstrated that the MLR can indeed lead to both running and increased responsiveness in the cortex, and that these two effects could be dissociated, showing that they are conveyed via separate pathways.

Next, researchers activated the terminals of the neurons' axons in the basal forebrain, a region that sends neuromodulatory projections to the visual cortex. Stimulation here also induced changes in the cortex, but without the intermediary step of running. Interestingly, the basal forebrain is known to use the neuromodulator acetycholine, which is often associated with alertness and attention.

It is unclear whether humans experience heightened visual perception while running, but the study adds to growing evidence that the processes governing active movement and sensory processing in the brain are tightly connected. Similar regions have been targeted in humans for therapeutic deep-brain stimulation to treat motor dysfunction in patients with Parkinson's disease. Activating this circuit might also provide a means to enhance neuroplasticity, the brain's capacity to rewire itself.

Niell's team included Moses Lee, a visiting scholar at the UO and student in the M.D.-Ph.D. program at UC-San Francisco, who served as the lead author on the paper. "While it seems that moving and sensing are two independent processes, a lot of new research suggests that they are deeply coupled," Lee said. "My hope is that our study can help solidify our understanding of how the brain functions differently in 'alert' states."

###

Other authors were Jennifer Hoy of the UO, Antonello Bonci of the National Institute of Drug Abuse and Johns Hopkins School of Medicine, Linda Wilbrecht of the UC-Berkeley, and Stryker. Research in the Niell lab at the UO was conducted over the past three years with funding from the National Institutes of Health. NIH grants supporting the research were 1R01EY023337 to Niell, 1R01EY02874 to Stryker and 1RC2NS069350 and 1R01MH087542 to Wilbrecht.

About the University of Oregon
The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Media Contacts: Lewis Taylor, lewist@uoregon.edu, 541-346-2816, or Jim Barlow, jebarlow@uoregon.edu, 541-346-3481

Source: Cristopher Niell, assistant professor, Department of Biology, 541-346-8598, cniell@uoregon.edu

Links:

Niell faculty page: http://uoneuro.uoregon.edu/ionmain/htdocs/faculty/niell.html

Institute of Neuroscience: http://uoneuro.uoregon.edu/ionmain/htdocs/index.html

Department of Biology: http://biology.uoregon.edu/

University of Oregon: http://uoregon.edu/

Like UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

Follow UO Science on Twitter: https://twitter.com/UO_Research

Note: The University of Oregon is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. In addition, there is video access to satellite uplink, and audio access to an ISDN codec for broadcast-quality radio interviews.

Lewis Taylor | Eurek Alert!

Further reports about: Biology Neuron Neuroscience Science circuit movement neural neurons pathways processes sensory

More articles from Life Sciences:

nachricht Perseus translates proteomics data
27.07.2016 | Max-Planck-Institut für Biochemie

nachricht Severity of enzyme deficiency central to favism
26.07.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New study reveals where MH370 debris more likely to be found

27.07.2016 | Earth Sciences

Dirty to drinkable

27.07.2016 | Materials Sciences

Exploring one of the largest salt flats in the world

27.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>