Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oregon study details brain pathways linking visual function, running

17.07.2014

Findings, in mice, fuel the idea that processes of active movement and sensory processing are connected

A new study by researchers at the University of Oregon published today in the journal Neuron describes a brainstem circuit in mice that may help explain how active movement impacts the way the brain processes sensory information.


Christopher Niell, a biologist and member of the University of Oregon's Institute of Neuroscience, directed a team that provided new details in the journal Neuron about a brainstem circuit in mice that may help explain how active movement impacts the way the brain processes sensory information.

Credit: University of Oregon

"Previous studies have examined changes in the visual cortex of mice during running. What was unknown was how do running and vision get linked together in the first place?" said Cristopher Niell, a biology professor in the Institute of Neuroscience and the senior author on the paper "Identification of a Brainstem Circuit Regulating Visual Cortical State in Parallel with Locomotion."

The "aha moment" that inspired the study came five years ago when Niell, as a postdoctoral fellow in Michael Stryker's lab at the University of California, San Francisco, was examining visual perception in mice. He observed that running appeared to be changing how neurons in the brain were firing.

"We found that running turned up the magnitude in the mouse's visual cortex by about two-fold — the signals were basically twice as strong when the mouse was running," Niell said.

This initial finding, demonstrating a mind-body connection in the mouse visual system, was published in Neuron in 2010. Following up on this finding, Niell's team sought to identify neural circuits that could link movement and vision together.

The researchers focused on the brain's mesencephalic locomotor region (MLR), which has been shown to mediate running and other forms of activity in many species. They hypothesized that neural pathways originating in the MLR could serve a dual role – sending a signal down to the spinal cord to initiate locomotion, and another up to the cortex to turn up the visual response.

Using optogenetic methods, the team created genetically sensitized neurons in the MLR region of the mouse brain that could be activated by light. The team then recorded the resulting increased visual responses in the cortex. Their results demonstrated that the MLR can indeed lead to both running and increased responsiveness in the cortex, and that these two effects could be dissociated, showing that they are conveyed via separate pathways.

Next, researchers activated the terminals of the neurons' axons in the basal forebrain, a region that sends neuromodulatory projections to the visual cortex. Stimulation here also induced changes in the cortex, but without the intermediary step of running. Interestingly, the basal forebrain is known to use the neuromodulator acetycholine, which is often associated with alertness and attention.

It is unclear whether humans experience heightened visual perception while running, but the study adds to growing evidence that the processes governing active movement and sensory processing in the brain are tightly connected. Similar regions have been targeted in humans for therapeutic deep-brain stimulation to treat motor dysfunction in patients with Parkinson's disease. Activating this circuit might also provide a means to enhance neuroplasticity, the brain's capacity to rewire itself.

Niell's team included Moses Lee, a visiting scholar at the UO and student in the M.D.-Ph.D. program at UC-San Francisco, who served as the lead author on the paper. "While it seems that moving and sensing are two independent processes, a lot of new research suggests that they are deeply coupled," Lee said. "My hope is that our study can help solidify our understanding of how the brain functions differently in 'alert' states."

###

Other authors were Jennifer Hoy of the UO, Antonello Bonci of the National Institute of Drug Abuse and Johns Hopkins School of Medicine, Linda Wilbrecht of the UC-Berkeley, and Stryker. Research in the Niell lab at the UO was conducted over the past three years with funding from the National Institutes of Health. NIH grants supporting the research were 1R01EY023337 to Niell, 1R01EY02874 to Stryker and 1RC2NS069350 and 1R01MH087542 to Wilbrecht.

About the University of Oregon
The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Media Contacts: Lewis Taylor, lewist@uoregon.edu, 541-346-2816, or Jim Barlow, jebarlow@uoregon.edu, 541-346-3481

Source: Cristopher Niell, assistant professor, Department of Biology, 541-346-8598, cniell@uoregon.edu

Links:

Niell faculty page: http://uoneuro.uoregon.edu/ionmain/htdocs/faculty/niell.html

Institute of Neuroscience: http://uoneuro.uoregon.edu/ionmain/htdocs/index.html

Department of Biology: http://biology.uoregon.edu/

University of Oregon: http://uoregon.edu/

Like UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience

Follow UO Science on Twitter: https://twitter.com/UO_Research

Note: The University of Oregon is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. In addition, there is video access to satellite uplink, and audio access to an ISDN codec for broadcast-quality radio interviews.

Lewis Taylor | Eurek Alert!

Further reports about: Biology Neuron Neuroscience Science circuit movement neural neurons pathways processes sensory

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>