Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oregon chemists moving forward with tool to detect hydrogen sulfide

25.06.2013
Newly developed approach could benefit basic medical research and find H2S in the environment

University of Oregon chemists have developed a selective probe that detects hydrogen sulfide (H2S) levels as low as 190 nanomolar (10 parts per billion) in biological samples. They say the technique could serve as a new tool for basic biological research and as an enhanced detection system for H2S in suspected bacterially contaminated water sources.

Hydrogen sulfide, a colorless gas, has long been known for its dangerous toxicity -- and its telltale smell of rotten eggs -- in the environment, but in the last decade the gas has been found to be produced in mammals, including humans, with seemingly important roles in molecular signaling and cardiac health. Detection methods for biological systems are emerging from many laboratories as scientists seek to understand the roles of H2S in general health and different diseases.

Reporting in the Journal of Organic Chemistry -- online in advance of regular print publication -- researchers in the UO lab of Michael D. Pluth, professor of chemistry, describe the development of a colorimetric probe that relies on nucleophilic aromatic substitution to react selectively with H2S to produce a characteristic purple product, allowing for precise H2S measurement.

"This paper describes a new way to selectively detect H2S," said Pluth, who has been pursuing detection methods for the gas under a National Institutes of Health "Pathway to Independence" grant. That early career award began while he was a postdoctoral researcher at the Massachusetts Institute of Technology. "This technique allows you to use instruments to quantify how much H2S has been produced in a sample, and the distinctive color change allows for naked-eye detection."

In biological samples, he said, the approach allows for a precise measurement. In the environment, he added, the technique could be used to determine if potentially harmful H2S-producing bacteria are a contaminant in water sources through the creation of testing kits to detect the gas when levels are above a defined threshold.

The key to the technique, said the paper's lead author, doctoral student Leticia A. Montoya, is the reaction process in which the probe reacts with H2S to produce a distinctly identifiable purple compound. "This method allows you look selectively at hydrogen sulfide versus any other nucleophiles or biological thiols in a system," Montoya said. "It allows you to more easily visualize where H2S is present."

The chemical reaction produced in the experiments, Pluth said, also holds the potential to be applied in a variety of materials, on surfaces and films, with appropriate modifications. The UO has applied for a provisional patent to cover the technology.

The study is the second in which Pluth's lab has reported potential detection probes for H2S. Last year, in the journal Chemical Communications, Montoya and Pluth described their development of two bright fluorescent probes that sort out H2S from among cysteine, glutathione and other reactive sulfur, nitrogen and oxygen species in living cells.

"We're really interested in making sharper tools," Pluth said. "We have the basic science worked out, and now we want to move forward to fine-tune our tools so that we can better use them to answer important scientific questions."

"University of Oregon researchers are helping to foster a more sustainable future by developing powerful new tools and entrepreneurial technologies," said Kimberly Andrews Espy, vice president for research and innovation and dean of the UO graduate school. "This important research from Dr. Pluth's lab may someday alert us to environmental contaminants and could also impact basic science and human health."

Co-authors with Montoya and Pluth on the newly published paper were UO undergraduate students Taylor F. Pearce and Ryan J. Hansen, and Lev N. Zakharov of the UO-based Center for Advanced Materials Characterization in Oregon (CAMCOR). The NIH grant to Pluth (R00 GM092970) came from the National Institute for General Medical Sciences. The research also utilized UO-based nuclear magnetic resonance facilities that are supported by the National Science Foundation (ARRA CHE-0923589).

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Sources:

Michael D. Pluth
assistant professor of chemistry
541-346-7477
pluth@uoregon.edu
Leticia A. Montoya
doctoral student, chemistry
lmontoya@uoregon.edu
Links:
Pluth faculty page: http://chemistry.uoregon.edu/fac.html?pluth
Pluth lab: http://pages.uoregon.edu/pluth/
Department of Chemistry: http://chemistry.uoregon.edu
Follow UO Science on Facebook: http://www.facebook.com/UniversityOfOregonScience
UO Science on Twitter: http://twitter.com/UO_Research
More UO Science/Research News: http://uoresearch.uoregon.edu
Note: The University of Oregon is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. In addition, there is video access to satellite uplink, and audio access to an ISDN codec for broadcast-quality radio interviews.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>