Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orangutans harbor ancient primate Alu

30.04.2012
Alu elements infiltrated the ancestral primate genome about 65 million years ago.

Once gained an Alu element is rarely lost so comparison of Alu between species can be used to map primate evolution and diversity. New research published in BioMed Central's open access journal Mobile DNA has found a single Alu, which appears to be an ancestral great ape Alu, that has uniquely multiplied within the orangutan genome.

Analysis of DNA sequences has found over a million Alu elements within each primate genome, many of which are species specific: 5,000 are unique to humans, while 2,300 others are exclusive to chimpanzees. In contrast the orangutan lineage (Sumatran and Bornean orangutans) only has 250 specific Alu.

These tiny pieces of mobile DNA are able to copy themselves using a method similar to retroviruses. But, because this is an inexact process, a segment of 'host' DNA is duplicated at the Alu insertion sites and these footprints, known as 'target site duplications', can be used to 'identify' Alu insertions. Alu elements can be thought of as molecular fossils, and a shared Alu element sequence and location within the genome indicates a common ancestor.

Researchers from Louisiana State University, in collaboration with the Zoological Society of San Diego and the Institute of Systems Biology in Seattle, found a single Alu which is present in great apes, but absent from gibbons and siamang, and so was likely acquired after ancestors of these species diverged. This founder Alu element was found in an intron (non-coding DNA) on chromosome 7.

Subsequent copying of this Alu, visible as insertions into chromosomes 4, 17, and 12, are unique to orangutans, suggesting that the founder Alu inserted before orangutans separated from other members of the Hominidae (humans, gorillas, and chimpanzees). The Sumatran orangutan also has a copy of this Alu in chromosome 13, and has gained a daughter Alu, which rapidly expanded into chromosomes 21, 2b, and 17. These extra insertions are able to pinpoint the divergence of Sumatran and Bornean orangutans.

The ancestral Alu has been much less active in other great apes, but can still provide information about speciation. While still on chromosome 7 the Alu gained three mutations which can be traced to before the split of gorillas with humans and chimpanzees. It subsequently copied itself into chromosome 3 of humans, indicating that this must have occurred after humans split from bonobos and chimpanzees.

Prof Batzer, who led this research along with Jerilyn Walker and Miriam Konkel, explained "Despite otherwise low activity of Alu retrotransposition in orangutans, this ancestral Alu, still present on chromosome 7, has duplicated more rapidly in orangutans than other Hominidae and likely served as an ancient backseat driver that contributed to the recent orangutan-specific expansion of the Alu family."

Media Contact

Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: +44 (0) 20 3192 2370
Mob: +44 (0) 778 698 1967
Email: hilary.glover@biomedcentral.com
Notes to Editors
1. Orangutan Alu Quiescence Reveals Possible Source Element: Support for Ancient Backseat Drivers Jerilyn A Walker, Miriam K Konkel, Brygg Ullmer, Christopher P Monceaux, Oliver A Ryder, Robert Hubley, Arian F A Smit and Mark A Batzer Mobile DNA (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request on the day of publication.

2. Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>