Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orangutans harbor ancient primate Alu

30.04.2012
Alu elements infiltrated the ancestral primate genome about 65 million years ago.

Once gained an Alu element is rarely lost so comparison of Alu between species can be used to map primate evolution and diversity. New research published in BioMed Central's open access journal Mobile DNA has found a single Alu, which appears to be an ancestral great ape Alu, that has uniquely multiplied within the orangutan genome.

Analysis of DNA sequences has found over a million Alu elements within each primate genome, many of which are species specific: 5,000 are unique to humans, while 2,300 others are exclusive to chimpanzees. In contrast the orangutan lineage (Sumatran and Bornean orangutans) only has 250 specific Alu.

These tiny pieces of mobile DNA are able to copy themselves using a method similar to retroviruses. But, because this is an inexact process, a segment of 'host' DNA is duplicated at the Alu insertion sites and these footprints, known as 'target site duplications', can be used to 'identify' Alu insertions. Alu elements can be thought of as molecular fossils, and a shared Alu element sequence and location within the genome indicates a common ancestor.

Researchers from Louisiana State University, in collaboration with the Zoological Society of San Diego and the Institute of Systems Biology in Seattle, found a single Alu which is present in great apes, but absent from gibbons and siamang, and so was likely acquired after ancestors of these species diverged. This founder Alu element was found in an intron (non-coding DNA) on chromosome 7.

Subsequent copying of this Alu, visible as insertions into chromosomes 4, 17, and 12, are unique to orangutans, suggesting that the founder Alu inserted before orangutans separated from other members of the Hominidae (humans, gorillas, and chimpanzees). The Sumatran orangutan also has a copy of this Alu in chromosome 13, and has gained a daughter Alu, which rapidly expanded into chromosomes 21, 2b, and 17. These extra insertions are able to pinpoint the divergence of Sumatran and Bornean orangutans.

The ancestral Alu has been much less active in other great apes, but can still provide information about speciation. While still on chromosome 7 the Alu gained three mutations which can be traced to before the split of gorillas with humans and chimpanzees. It subsequently copied itself into chromosome 3 of humans, indicating that this must have occurred after humans split from bonobos and chimpanzees.

Prof Batzer, who led this research along with Jerilyn Walker and Miriam Konkel, explained "Despite otherwise low activity of Alu retrotransposition in orangutans, this ancestral Alu, still present on chromosome 7, has duplicated more rapidly in orangutans than other Hominidae and likely served as an ancient backseat driver that contributed to the recent orangutan-specific expansion of the Alu family."

Media Contact

Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: +44 (0) 20 3192 2370
Mob: +44 (0) 778 698 1967
Email: hilary.glover@biomedcentral.com
Notes to Editors
1. Orangutan Alu Quiescence Reveals Possible Source Element: Support for Ancient Backseat Drivers Jerilyn A Walker, Miriam K Konkel, Brygg Ullmer, Christopher P Monceaux, Oliver A Ryder, Robert Hubley, Arian F A Smit and Mark A Batzer Mobile DNA (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request on the day of publication.

2. Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>