Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Orangutans harbor ancient primate Alu

30.04.2012
Alu elements infiltrated the ancestral primate genome about 65 million years ago.

Once gained an Alu element is rarely lost so comparison of Alu between species can be used to map primate evolution and diversity. New research published in BioMed Central's open access journal Mobile DNA has found a single Alu, which appears to be an ancestral great ape Alu, that has uniquely multiplied within the orangutan genome.

Analysis of DNA sequences has found over a million Alu elements within each primate genome, many of which are species specific: 5,000 are unique to humans, while 2,300 others are exclusive to chimpanzees. In contrast the orangutan lineage (Sumatran and Bornean orangutans) only has 250 specific Alu.

These tiny pieces of mobile DNA are able to copy themselves using a method similar to retroviruses. But, because this is an inexact process, a segment of 'host' DNA is duplicated at the Alu insertion sites and these footprints, known as 'target site duplications', can be used to 'identify' Alu insertions. Alu elements can be thought of as molecular fossils, and a shared Alu element sequence and location within the genome indicates a common ancestor.

Researchers from Louisiana State University, in collaboration with the Zoological Society of San Diego and the Institute of Systems Biology in Seattle, found a single Alu which is present in great apes, but absent from gibbons and siamang, and so was likely acquired after ancestors of these species diverged. This founder Alu element was found in an intron (non-coding DNA) on chromosome 7.

Subsequent copying of this Alu, visible as insertions into chromosomes 4, 17, and 12, are unique to orangutans, suggesting that the founder Alu inserted before orangutans separated from other members of the Hominidae (humans, gorillas, and chimpanzees). The Sumatran orangutan also has a copy of this Alu in chromosome 13, and has gained a daughter Alu, which rapidly expanded into chromosomes 21, 2b, and 17. These extra insertions are able to pinpoint the divergence of Sumatran and Bornean orangutans.

The ancestral Alu has been much less active in other great apes, but can still provide information about speciation. While still on chromosome 7 the Alu gained three mutations which can be traced to before the split of gorillas with humans and chimpanzees. It subsequently copied itself into chromosome 3 of humans, indicating that this must have occurred after humans split from bonobos and chimpanzees.

Prof Batzer, who led this research along with Jerilyn Walker and Miriam Konkel, explained "Despite otherwise low activity of Alu retrotransposition in orangutans, this ancestral Alu, still present on chromosome 7, has duplicated more rapidly in orangutans than other Hominidae and likely served as an ancient backseat driver that contributed to the recent orangutan-specific expansion of the Alu family."

Media Contact

Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: +44 (0) 20 3192 2370
Mob: +44 (0) 778 698 1967
Email: hilary.glover@biomedcentral.com
Notes to Editors
1. Orangutan Alu Quiescence Reveals Possible Source Element: Support for Ancient Backseat Drivers Jerilyn A Walker, Miriam K Konkel, Brygg Ullmer, Christopher P Monceaux, Oliver A Ryder, Robert Hubley, Arian F A Smit and Mark A Batzer Mobile DNA (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request on the day of publication.

2. Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>